W jaki sposób system sztucznej inteligencji może rozwijać swoją wiedzę w dziedzinie? Czy jest coś więcej niż tylko uczenie maszynowe?

9

Uczenie maszynowe pozwala więc na automatyczną automatyzację systemu w tym sensie, że może przewidzieć przyszły stan na podstawie tego, czego się nauczył. Moje pytanie brzmi: czy techniki uczenia maszynowego to jedyny sposób, aby system rozwinął swoją wiedzę w dziedzinie?

Jake Marry
źródło

Odpowiedzi:

1

Cóż, mówimy o systemie (maszynie), który rozwija wiedzę (uczy się), więc trudno jest takiej technice nie znaleźć się w uczeniu maszynowym.

Można jednak argumentować, że mechanizmy wnioskowania działające na bazie wiedzy opartej na grafie w celu uzyskania nowych propozycji lub prawdopodobieństw nie są częścią uczenia maszynowego. Oczywiście w takim przypadku część wiedzy wcale nie jest pozyskiwana, ale raczej wprowadzana przez programistów.

Wciąż czytam o tym, ale mam wrażenie, że te bazy wiedzy i mechanizmy wnioskowania stały się dość popularne w latach dziewięćdziesiątych i wielu badaczy AGI nadal pracuje w tym kierunku.

BlindKungFuMaster
źródło
Czy trafnie byłoby powiedzieć, że niektóre współczesne metody budują tę bazę wiedzy za pomocą sztucznej inteligencji kontra sztuczna inteligencja?
DukeZhou
Być może myślisz o samodzielnej grze jak w Alphago, to zdecydowanie nauka maszynowa. Nie wiem, czy istnieją systemy, które tworzą bazy wiedzy lub wykresy wiedzy poprzez samodzielną grę.
BlindKungFuMaster
1

To zależy od tego, jak szeroko zdefiniujesz „techniki uczenia maszynowego”. Możesz skonstruować definicję, aby z definicji cała nauka objęła tę rubrykę. OTOH, istnieje tak szeroki wachlarz technik uczenia maszynowego, że nie za wiele by to zyskało.

Prawdopodobnie bardziej sensowne jest mówienie o różnych rodzajach uczenia się, których używamy w uczeniu maszynowym / sztucznej inteligencji. Co najmniej masz:

  1. Nadzorowana nauka
  2. uczenie się bez nadzoru
  3. nauka częściowo nadzorowana
  4. konkurencyjne uczenie się

A potem takie rzeczy jak „uczenie się przez wzmacnianie”, które może sklasyfikować powyższe. Większość z tych rzeczy należy do tego, co ludzie nazywają „uczeniem maszynowym”.

Poza tym masz takie rzeczy, jak algorytmy indukcji reguł, techniki logiki dedukcyjnej, takie jak programowanie logiki indukcyjnej, które może w pewnym sensie „uczyć się”, mechanizmy wnioskowania, automatyczne rozumowanie itp., Które mają swoje własne sposoby „uczenia się” o świecie, ale są oddzielone od tego, co zwykle określa się mianem „uczenia maszynowego”.

Ale nawet mając to na uwadze, słusznie można zapytać, czy rzeczywiście istnieje tam linia podziału, czy nie. Rzeczywiście wydaje się, że istnieją powody, by sądzić, że przyszłe systemy sztucznej inteligencji mogą stosować podejście hybrydowe, które łączy wiele różnych technik bez względu na to, czy są oznaczone jako „uczenie maszynowe”, „GOFAI” lub „inne”.

przestępstwa umysłowe
źródło