Przykład DBSCAN
#!/usr/bin/env python
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.cluster import DBSCAN
total_samples = 1000
dimensionality = 3
points = np.random.rand(total_samples, dimensionality)
cosine_distance = cosine_similarity(points)
# option 1) vectors are close to each other if they are parallel
bespoke_distance = np.abs(np.abs(cosine_distance) -1)
# option 2) vectors are close to each other if they point in the same direction
bespoke_distance = np.abs(cosine_distance - 1)
results = DBSCAN(metric='precomputed', eps=0.25).fit(bespoke_distance)
Hurt Hoopoe