“Train Dev Test Split Sklearn” Kod odpowiedzi

Test Test Test Split Sklearn

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
The Frenchy

Sklearn Train_Test_Split

 import numpy as np
 from sklearn.model_selection import train_test_split


X_train, X_test, y_train, y_test = train_test_split(
  X, y, test_size=0.33, random_state=42
)
vcwild

Train Dev Test Split Sklearn

train, validate, test = np.split(df.sample(frac=1), [int(.6*len(df)), int(.8*len(df))])
Jittery Jellyfish

Test Test Test Sklearn

##sklearn train test split

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

#OR Randomly split your whole dataset to your desired percentage, insted of using a  ttarget variable:

training_data = df.sample(frac=0.8, random_state=25) #here we choose 80% as our training sample and for reproduciblity, we use random_state of 42
testing_data = df.drop(training_data.index) # testing sample is 20% of our initial data

DON-PECH

Odpowiedzi podobne do “Train Dev Test Split Sklearn”

Pytania podobne do “Train Dev Test Split Sklearn”

Przeglądaj popularne odpowiedzi na kod według języka

Przeglądaj inne języki kodu