Ruby on Rails (lub Trackety Track)

48

Jesteś Ruby, inżynierem kolei. Twoim zadaniem jest położyć ślad w dowolnej dolinie, tak aby odwiedzała każdą stację ( M). Ilość ułożonych torów nie jest ważna, ale musi być ułożona na jednej ciągłej ścieżce, która zaczyna się i kończy w punkcie wejścia / wyjścia doliny ( >) i nie przecina się w żadnym punkcie. Jest jeszcze kilka innych ograniczeń: góry ( ^) są nieprzejezdne, więc musisz je ominąć, rzeki ( ~) należy przekroczyć za pomocą mostu ( X), a także krawędź doliny ( #) jest nieprzejezdna.

Zasady toru

Jeśli tor nie zostanie prawidłowo ułożony, wystąpią wykolejenia i nikt tego nie chce, więc oto zasady dotyczące rozmieszczania torów.

Istnieją cztery rodzaje toru: - | / \.
Oto jak każdy z nich może być łączony z innymi:

Dozwolone kombinacje z -(w środku każdego przykładu):

#####  #####  #####  #####  #####  #####  #####
#   #  #   #  #\  #  #   #  #  /#  #\ /#  #   #
#---#  # --#  # --#  #-- #  #-- #  # - #  # - #
#   #  #/  #  #   #  #  \#  #   #  #   #  #/ \#
#####  #####  #####  #####  #####  #####  #####

-nigdy nie może być łączony z |. To zbyt ostry zakręt, aby pociągi mogły bezpiecznie jechać.

Dozwolone kombinacje z /(w środku każdego przykładu):

#####  #####  #####  #####  #####  #####  #####
#  /#  #  -#  #  |#  #  /#  #  /#  #  -#  #  |#
# / #  # / #  # / #  # / #  # / #  # / #  # / #
#/  #  #/  #  #/  #  #|  #  #-  #  #|  #  #-  #
#####  #####  #####  #####  #####  #####  #####

\nigdy nie może być łączony z /. To zbyt ostry zakręt, aby pociągi mogły bezpiecznie jechać.

Dozwolone kombinacje z \(w środku każdego przykładu):

#####  #####  #####  #####  #####  #####  #####
#\  #  #-  #  #|  #  #\  #  #\  #  #-  #  #|  #
# \ #  # \ #  # \ #  # \ #  # \ #  # \ #  # \ #
#  \#  #  \#  #  \#  #  |#  #  -#  #  |#  #  -#
#####  #####  #####  #####  #####  #####  #####

Dozwolone kombinacje z |(w środku każdego przykładu):

#####  #####  #####  #####  #####  #####  #####
# | #  #\  #  #  /#  # | #  # | #  #  /#  #\  #
# | #  # | #  # | #  # | #  # | #  # | #  # | #
# | #  # | #  # | #  #/  #  #  \#  #  \#  #/  #
#####  #####  #####  #####  #####  #####  #####

Tory mogą łączyć się ze stacjami, mostami i wejściem / wyjściem do doliny w następujący sposób:

#####  #####  #####
#\|/#  #\|/#  #/  #
#-M-#  #-X-#  >-  #
#/|\#  #/|\#  #\  #
#####  #####  #####

Stacje mają stoły obrotowe, więc można opuścić stację pod ostrym kątem (choć nie w tę samą stronę, z której przybyłeś - nie chciałbyś wskoczyć do następnego zaplanowanego pociągu jadącego w drugą stronę!).
Mosty służą do przekraczania rzek, więc musisz wyjść z mostu po przeciwnej stronie rzeki, do której wpłynąłeś.

Wejście

Dane wejściowe będą przez STDIN dla programów lub argument funkcji dla funkcji. Jeśli twoja funkcja potrzebuje nazwy, aby uruchomić ją na moich danych wejściowych, deklaracja nazwy powinna zostać uwzględniona w liczbie bajtów.

Dane wejściowe będą stanowić pojedynczy ciąg znaków z podziałem wierszy. Każda linia w twoim wejściu będzie zawsze miała taką samą długość jak inne, co daje prostokątne wejście. Krawędź wejścia będzie zawsze solidna i nieprzejezdna ( #), z wyjątkiem punktu wejścia. Każde dane wejściowe będą miały co najmniej jedną prawidłową odpowiedź.

Wynik

Twój wynik powinien zostać zwrócony jako pojedynczy ciąg znaków z podziałem wierszy funkcji lub wydrukowany / wyświetlony na ekranie dla pełnych programów.

Dane wyjściowe powinny być takie same jak dane wejściowe, ale z dodanymi znakami ścieżki.

Punktacja

Zwycięzcą będzie najkrótszy kod w bajtach.

Przypadki testowe

###########
#    M    #
#   ^     #
>  ^^  M  #
#    ^    #
#~~~~~~~~~#
# M       #
#     ^^  #
#        M#
###########


#################
#               #
#   M         M #
#       ^       #
#        ^ M    #
#~~~~~~~^       #
#               #
#   ^           #
#   M^          #
#    ^          #
> ^^^          M#
#               #
#        M      #
#################

###############
# M   ~       #
#     ~       #
>     ~    M  #
#     ~       #
#     ~       #
#     ~       #
###############

Możliwe rozwiązania przypadków testowych

###########
# ---M    #
#/  ^ \   #
>  ^^  M  #
#\   ^ |  #
#~X~~~~X~~#
# M     \ #
#  \  ^^ |#
#   -----M#
###########

#################
#               #
#   M---------M #
#   |   ^    /  #
#  /     ^ M-   #
#~X~~~~~^  |    #
# |         \   #
#  \^        \  #
# --M^        \ #
#/   ^         |#
> ^^^          M#
#\            / #
# -------M----  #
#################

###############
# M   ~       #
#/ \  ~       #
>   --X----M  #
#\    ~    |  #
# \   ~   /   #
#  ---X---    #
###############
Gareth
źródło
8
Wreszcie! To wyzwanie było w Piaskownicy na zawsze!
mbomb007
18
@ mbomb007 Niezupełnie, minęły 4 miesiące od rozpoczęcia tej strony do opublikowania pytania w piaskownicy ;-)
Gareth
1
@Gareth mogą mieć zwroty? Czy mogą być szersze niż jedna komórka?
Martin Ender
1
czekaj - Co jeśli będziemy musieli przesunąć tylko jedno pole w pionie podczas przechodzenia w poziomie?
SIGSTACKFAULT
1
Boli mnie głowa. Pracowałem nad tym i jest tak ciężko
Christopher

Odpowiedzi:

26

Python 2 , 3990 3430 4412 4313 bajtów

Jest to w zasadzie A * z brzydką heurystyczną i brzydką getChildrenmetodą. Aby uruchomić 3 przypadki testowe kolejno, uruchamia się 6.5sna moim komputerze. Funkcja fjest tutaj rozwiązaniem. Bierze mapę jako ciąg i zwraca rozwiązaną mapę jako ciąg.

from itertools import*
import sys
from Queue import*
A,B,C,D,E,F,G=">|\\/-MX";H=range;I=permutations;J=set;K=abs;L=len
class M:
	@staticmethod
	def T(a):return a in">|\\/-MX"
	@staticmethod
	def C(a,b,c,d,x,y,e):
		if not M.T(d)or not M.T(e):return 0
		if e in"MX"and d in"MX"and e!=d:return 1
		if d==A:return x>0 and(e==D and y==-1 or e==E and y==0 or e==C and y==1)
		if d==F:return e==C and K(x+y)==2 or e==D and x+y==0 or e==B and x==0 or e==E and y==0
		if d==G:
			if b!=0!=c and K(b-x)+K(c-y)==1:return 0
			return e==C and K(x+y)==2 or e==D and x+y==0 or e==B and x==0 or e==E and y==0
		if e!=""and e in"MX>"and a!=""and a in"MX>":return M.C("",0,0,a,-b,-c,d)and M.C("",0,0,e,-x,-y,d)
		elif e!=""and e in"MX>"and a!="":return M.C("",0,0,d,b,c,a)and M.C("",0,0,e,-x,-y,d)
		elif e!=""and e in"MX>"and a=="":return M.C("",0,0,e,-x,-y,d)
		elif a!=""and a in"MX>":return M.C("",0,0,a,-b,-c,d)and M.C("",0,0,d,x,y,e)
		f=[[E,-1,0,E,1,0,E],[D,-1,1,E,1,0,E],[C,-1,-1,E,1,0,E],[E,-1,0,E,1,1,C],[E,-1,0,E,1,-1,D],[C,-1,-1,E,1,-1,D],[D,-1,1,E,1,1,C],[D,-1,1,D,1,-1,D],[D,-1,1,D,1,-1,E],[D,-1,1,D,1,-1,B],[B,-1,1,D,1,-1,D],[E,-1,1,D,1,-1,D],[B,-1,1,D,1,-1,E],[E,-1,1,D,1,-1,B],[C,-1,-1,C,1,1,C],[C,-1,-1,C,1,1,E],[C,-1,-1,C,1,1,B],[B,-1,-1,C,1,1,C],[E,-1,-1,C,1,1,C],[B,-1,-1,C,1,1,E],[E,-1,-1,C,1,1,B],[B,0,-1,B,0,1,B],[C,-1,-1,B,0,1,B],[D,1,-1,B,0,1,B],[B,0,-1,B,-1,1,D],[B,0,-1,B,1,1,C],[D,1,-1,B,1,1,C],[C,-1,-1,B,-1,1,D]];g=0;h=[a,b,c,d,x,y,e];j=[0,3][a==""]
		for k in f:
			l=1;m=1;n=[k[6],k[4],k[5],k[3],k[1],k[2],k[0]]
			for i in H(j,L(k)):
				if k[i]!=h[i]:l=0
				if n[i]!=h[i]:m=0
			if l or m:g=1
		return g
	def __init__(s,a):s.m=[list(x)for x in a.split("\n")]
	def __str__(s):return"\n".join(["".join(x)for x in s.m])
	def A(s):return str(s)
	def B(s):return L(s.m[0])
	def D(s):return L(s.m)
	def E(s):
		a=[]
		for y in H(1,s.D()-1):
			for x in H(1,s.B()-1):
				if s.J(x,y)==F and L(s.H(x,y, F))==0:a+=[(x,y)]
		return a
	def F(s):
		for y in H(s.D()):
			for x in H(s.B()):
				if s.J(x,y)==A:return(x,y)
	def G(s):
		a=0
		for y in H(0,s.D()-1):
			for x in H(0,s.B()-1):
				b=s.J(x,y)
				c=L(s.H(x,y,b))
				if b==A:
					if c==0:a=(x,y)
					c=0
				if c==1:return(x,y)
		if a!=0:
			return a
		raise ValueError()
	def J(s,x,y):return s.m[y][x]
	def K(s,x,y,b):
		a=[[i for i in row]for row in s.m];a[y][x]=b
		return"\n".join("".join(x)for x in a)
	def H(s,x,y,c):
		d=[];e=[]
		for a,b in J(I([-1,-1,0,1,1],2)):
			g=s.J(x+a,y+b)
			if M.T(g)and M.C("",0,0,c,a,b,g):e+=[[g,a,b]]
		if L(e)==1:return[e[0][0]]
		if L(e)==0:return[]
		for g,h in I(e,2):
			i,j,k=g;l,m,n=h;o=x + m;p=y + n
			if M.C(i,j,k,c,m,n,l):
				if l==F:
					if L(s.H(o,p,l))>=1:d+=[l]
				else:d+=[l]
		return d
	def I(s,x,y,a,b):
		if a==0 or b==0:return 0
		a=s.J(x+a,y);b=s.J(x,y+b)
		return(M.T(a)or a==F)and(M.T(b)or b==F)
class P:
	@staticmethod
	def A(x0,y0,x1,y1):return K(x0-x1)+4*K(y0-y1)
	def __init__(s,a,p,t=0,g=0):
		s.a=[];s.b=p;s.c=a;s.d=[a];s.e=t;s.f=g
		if p:s.d=p.d[:];s.d+=[a];s.e=p.e;s.f=p.f
		s.g=M(a);s.h=s.B()
	def __str__(s):return s.g.A()
	def B(s):
		a=0;b=1;c=0
		try:c=s.g.G()
		except:a=1
		d=s.g.E();e=s.g.F();g=[]
		if L(d)==0 and not a:g=P.A(c[0],c[1],e[0],e[1])+b
		elif L(d)==0 and a:return 0
		elif c:
			h,i=c
			for j in combinations(d,L(d)):
				k=0
				for x,y in j:k+=P.A(h,i,x,y);h,i=x,y
				g+=[k]
			g=min(g);g+=s.g.B()+s.g.D()+b
		else:return sys.maxint
		if g<1:return 0
		return g
	def C(s):
		try:a=s.g.G()
		except:s.a=[];return
		b=s.g.J(a[0],a[1]);c=("",0,0);e=(0,0)
		for x,y in J(I([-1,-1,0,1,1],2)):
			g,h=a[0]+x,a[1]+y;i=s.g.J(g,h)
			if M.T(i)and M.C("",0,0,i,x,y,b):c=(i,x,y)
			if i=="~":e=(x,y)
		for x,y in J(I([-1,-1,0,1,1],2)):
			g,h=a[0]+x,a[1]+y;i=s.g.J(g,h)
			if not(i in"^#"or M.T(i)):
				for j in"-|\\/":
					if i=="~":
						j=G 
						if c[0]==G:continue
					if c[0]==G and K(e[0])==1 and y==c[1]:continue
					if c[0]==G and K(e[1])==1 and x==c[0]:continue
					k=s.g.H(g,h,j);l=L(k)
					if(l==1 or l==2 and A in k)and M.C(c[0],c[1],c[2],b,x,y,j)and not s.g.I(a[0],a[1],x,y):
						try:s.a+=[P(s.g.K(g,h,j),s)]
						except:pass
def f(x):
	d=[];a=[];b=PriorityQueue();b.put((0,P(x,0)))
	while not d and b.qsize():
		c=b.get()[1];c.C();a+=[c.c]
		for e in c.a:
			if e.c not in a:
				if not e.h:d=e.d
				b.put((e.h,e))
	return d[-1]

Wypróbuj online!

Przypadki testowe

Test 1

wprowadź opis zdjęcia tutaj

###########
# ---M    #
#/  ^ \   #
>  ^^  M  #
#\   ^ |  #
#~X~~~~X~~#
# M    |  #
#  \  ^^\ #
#   -----M#
###########

Test 2

wprowadź opis zdjęcia tutaj

#################
#               #
#   M---------M #
#  /    ^    /  #
# |      ^ M-   #
#~X~~~~~^   \   #
# |          |  #
#  \^        |  #
# --M^       |  #
#/   ^-       \ #
> ^^^/ \       M#
#\  /   \     / #
# --     M----  #
#################

Test 3

wprowadź opis zdjęcia tutaj

###############
# M   ~       #
#/ \  ~       #
>   --X----M  #
#\    ~   /   #
# ----X---    #
#     ~       #
###############

Kod źródłowy

A * State + A * Klasa solvera

Grałem w golfa z mojego rozwiązania. Ale istnieją w mojej „czytelnej” wersji. Klasa państwowa jest ogólna i ma być zaimplementowana. Klasa Solver przyjmuje stan początkowy, a następnie podąża za tym stanem heurystycznym getDist.

from Queue import PriorityQueue

# A* State
class State(object):
    # The type of value should be a primative
    def __init__(self, value, parent, start=0, goal=0):
        self.children = []
        self.parent = parent
        self.value = value
        self.dist = 0
        if parent:
            self.path = parent.path[:]
            self.path.append(value)
            self.start = parent.start
            self.goal = parent.goal
        else:
            self.path = [value]
            self.start = start
            self.goal = goal

    # Implement a heuristic for calculating the distance from this state to the goal
    def getDist(self):
        pass

    # Implement a way to create children for this state
    def createChildren(self):
        pass

# A* Solver 
# Note: if maxmin = 1: Solver tries to minimize the distance
#       if maxmin = -1: Solver tries to maximize the distance
class AStar_Solver:
    def __init__(self,startState,maxmin=1):
        self.path = []
        self.visitedQueue = []
        self.priorityQueue = PriorityQueue()
        self.priorityQueue.put((0,startState))
        self.startState = startState
        self.maxmin = maxmin
        self.count = 0

    # Create a png of the string 'qPop'
    def imager(self,qPop):
        # Imager(qPop,str(self.count).rjust(5,"0")+".png")
        # print str(qPop)+"\n"
        self.count += 1

    # Solve the puzzle
    def solve(self):
        while(not self.path and self.priorityQueue.qsize()):
            closestChild = self.priorityQueue.get()[1]
            self.imager(str(closestChild))
            closestChild.createChildren()
            self.visitedQueue.append(closestChild.value)
            for child in closestChild.children:
                if child.value not in self.visitedQueue:
                    if not child.dist:
                        self.imager(str(child))
                        self.path = child.path
                        break
                    self.priorityQueue.put((self.maxmin*child.dist,child))
        if not self.path:
            print "Goal was not reachable"
        return self.path

Klasa Stanowa

Jest to implementacja klasy stanu A *. Najważniejszą metodą jest tutaj getDistheurystyka do określania, jak blisko selfcelu jest cel. Jest to w zasadzie minimalna odległość do odwiedzenia wszystkich pozostałych miejsc docelowych i powrotu do rozpoczęcia.

from A_Star import State,AStar_Solver
from Ruby_Map import Map
from itertools import combinations, permutations
import sys

# A state class designed to work with A*
class State_Pathfinder(State):

    # This is deprecated
    @staticmethod
    def toValue(location):
        return str(location[0])+","+str(location[1])

    # Calculate the weighted distance between 2 points.
    # Not sure why the deltaY is more weighted. My theory
    # is that it is because the starting point is always
    # on a side. So vertical space is most precious?
    @staticmethod
    def distance(x0,y0,x1,y1):
        # return (abs(x0-x1)**2+abs(y0-y1)**2)**.5
        return 1*abs(x0-x1)+4*abs(y0-y1)

    def __init__(self, maps, parent, value=0, start=0, goal=0):
        super(State_Pathfinder,self).__init__(maps,parent,start,goal)
        self.map = Map(maps)
        self.dist = self.getDist()
        if not value:
            location = self.map.getLocation()
            self.value = maps
            self.path = [self.value]

    def __str__(self):
        return self.map.getDisplay()

    # The heuristic function that tells us
    # how far we are from the goal
    def getDist(self):
        blownup = False
        WEIGHT = 1
        location = None
        try:
            location = self.map.getLocation()
        except ValueError as e:
            blownup = True
        destinations = self.map.getDestinations()
        goal = self.map.getGoal()
        dist = []
        if len(destinations) == 0 and not blownup:
            dist = State_Pathfinder.distance(location[0],location[1],goal[0],goal[1])+WEIGHT
        elif len(destinations) == 0 and blownup:
            return 0
        elif location:
            oldX,oldY = location
            for path in combinations(destinations,len(destinations)):
                length = 0
                for pair in path:
                    x,y = pair
                    length += State_Pathfinder.distance(oldX,oldY,x,y)
                    oldX,oldY = x,y
                dist.append(length)
            dist = min(dist)
            dist += self.map.getWidth()+self.map.getHeight()+WEIGHT
        else:
            return sys.maxint
        if dist<1:
            return 0
        return dist

    # Creates all possible (legal) child states of this state
    def createChildren(self):
        if not self.children:
            try:
                location = self.map.getLocation()
            except:
                self.children = []
                return
            track = self.map.get(location[0],location[1])
            intrack = ("",0,0)
            river = (0,0)
            for x,y in set(permutations([-1,-1,0,1,1],2)):
                realX,realY = location[0]+x,location[1]+y
                adjacent = self.map.get(realX,realY)
                if Map.isTrack(adjacent) and Map.isConnected("",0,0,adjacent,x,y,track):
                    intrack = (adjacent,x,y)
                if adjacent=="~":
                    river = (x,y)
            for x,y in set(permutations([-1,-1,0,1,1],2)):
                realX,realY = location[0]+x,location[1]+y
                adjacent = self.map.get(realX,realY)
                if not Map.isBlocking(adjacent) and not adjacent in "M":
                    for outtrack in "-|\\/":
                        if adjacent=="~":
                            outtrack="X"
                            if intrack[0]=="X":continue
                        if intrack[0]=="X" and abs(river[0])==1 and y==intrack[1]:continue
                        if intrack[0]=="X" and abs(river[1])==1 and x==intrack[0]:continue
                        connections = self.map.getConnections(realX,realY,outtrack)
                        hoppin = len(connections)
                        connected = Map.isConnected(intrack[0],intrack[1],intrack[2],track,x,y,outtrack)
                        blocked = self.map.isBlocked(location[0],location[1],x,y)
                        if (hoppin==1 or hoppin==2 and ">" in connections) and connected and not blocked:
                            try:
                                maps = self.map.set(realX,realY,outtrack)
                                value = State_Pathfinder.toValue((realX,realY))
                                child = State_Pathfinder(maps,self,value)
                                self.children.append(child)
                            except ValueError as e:
                                print "Bad kid"
                                print e

# The solution function. Takes a map string
# and returns a map string.
def f(mapX):
    a = AStar_Solver(State_Pathfinder(mapX,0))
    a.solve()
    print a.path[-1]

if __name__ == "__main__":

    map1 = """###########
#    M    #
#   ^     #
>  ^^  M  #
#    ^    #
#~~~~~~~~~#
# M       #
#     ^^  #
#        M#
###########"""


    map2 = """#################
#               #
#   M         M #
#       ^       #
#        ^ M    #
#~~~~~~~^       #
#               #
#   ^           #
#   M^          #
#    ^          #
> ^^^          M#
#               #
#        M      #
#################"""

    map3 = """###############
# M   ~       #
#     ~       #
>     ~    M  #
#     ~       #
#     ~       #
#     ~       #
###############"""

    f(map3)
    f(map2)
    f(map1)

Klasa mapy

Ta klasa przechowuje i przetwarza mapę. Ta isConnectedmetoda jest prawdopodobnie najważniejsza. Sprawdza, czy 2 kawałki toru są połączone.

from itertools import permutations,combinations

# A map class designed to hold string map
# the specification is found here:
# http://codegolf.stackexchange.com/questions/104965/ruby-on-rails-or-trackety-track
class Map(object):

    # Is 'track' part of the railroad?
    @staticmethod
    def isTrack(track):
        return track in ">|\\/-MX"

    # Can I not build on this terrian?
    @staticmethod
    def isBlocking(terrian):
        return terrian in "^#" or (Map.isTrack(terrian) and not terrian=="M")

    # Are these 3 consecuative tracks connected in a legal fashion?
    @staticmethod
    def isConnected(inTerrian,relativeXin,relativeYin,centerTerrian,relativeXout,relativeYout,outTerrian):
        tin = inTerrian
        xin = relativeXin
        yin = relativeYin
        x = relativeXout
        y = relativeYout
        tout = outTerrian
        center = centerTerrian

        if not Map.isTrack(center) or not Map.isTrack(tout):
            return False

        if tout in "MX" and center in "MX" and tout!=center:
            return True



        if center == ">":
            return x>0 and (\
                tout == "/" and y == -1 or \
                tout == "-" and y == 0 or \
                tout == "\\" and y == 1 \
                )

        if center == "M":
            return tout == "\\" and abs(x+y) == 2 or \
                tout == "/" and x+y == 0 or \
                tout == "|" and x == 0 or \
                tout == "-" and y == 0

        if center == "X":
            if xin!=0!=yin and abs(xin-x)+abs(yin-y) == 1:
                return False
            return tout == "\\" and abs(x+y) == 2 or \
                tout == "/" and x+y == 0 or \
                tout == "|" and x == 0 or \
                tout == "-" and y == 0

        if tout!="" and tout in "MX>" and tin!="" and tin in "MX>":
            return Map.isConnected("",0,0,tin,-xin,-yin,center) and Map.isConnected("",0,0,tout,-x,-y,center)
        elif tout!="" and tout in "MX>" and tin!="":
            return Map.isConnected("",0,0,center,xin,yin,tin) and Map.isConnected("",0,0,tout,-x,-y,center)
        elif tout!="" and tout in "MX>" and tin=="":
            return Map.isConnected("",0,0,tout,-x,-y,center)
        elif tin!="" and tin in "MX>":
            return Map.isConnected("",0,0,tin,-xin,-yin,center) and Map.isConnected("",0,0,center,x,y,tout)

        allowed = [ \
            ["-",-1,0,"-",1,0,"-"], \
            ["/",-1,1,"-",1,0,"-"], \
            ["\\",-1,-1,"-",1,0,"-"], \
            ["-",-1,0,"-",1,1,"\\"], \
            ["-",-1,0,"-",1,-1,"/"], \
            ["\\",-1,-1,"-",1,-1,"/"], \
            ["/",-1,1,"-",1,1,"\\"], \

            ["/",-1,1,"/",1,-1,"/"], \
            ["/",-1,1,"/",1,-1,"-"], \
            ["/",-1,1,"/",1,-1,"|"], \
            ["|",-1,1,"/",1,-1,"/"], \
            ["-",-1,1,"/",1,-1,"/"], \
            ["|",-1,1,"/",1,-1,"-"], \
            ["-",-1,1,"/",1,-1,"|"], \

            ["\\",-1,-1,"\\",1,1,"\\"], \
            ["\\",-1,-1,"\\",1,1,"-"], \
            ["\\",-1,-1,"\\",1,1,"|"], \
            ["|",-1,-1,"\\",1,1,"\\"], \
            ["-",-1,-1,"\\",1,1,"\\"], \
            ["|",-1,-1,"\\",1,1,"-"], \
            ["-",-1,-1,"\\",1,1,"|"], \

            ["|",0,-1,"|",0,1,"|"], \
            ["\\",-1,-1,"|",0,1,"|"], \
            ["/",1,-1,"|",0,1,"|"], \
            ["|",0,-1,"|",-1,1,"/"], \
            ["|",0,-1,"|",1,1,"\\"], \
            ["/",1,-1,"|",1,1,"\\"], \
            ["\\",-1,-1,"|",-1,1,"/"] \
        ]

        passing = False
        forward = [tin,xin,yin,center,x,y,tout]
        start = [0,3][tin==""]

        for allow in allowed:
            maybeF = True
            maybeB = True
            backallowed = [allow[6],allow[4],allow[5],allow[3],allow[1],allow[2],allow[0]]
            for i in range(start,len(allow)):
                if allow[i]!=forward[i] and str(forward[i])not in"*":
                    maybeF = False
                if backallowed[i]!=forward[i] and str(forward[i])not in"*":
                    maybeB = False
            if maybeF or maybeB:
                passing = True
        return passing

    def __init__(self,mapString):
        self.indexableMap = [list(x) for x in mapString.split("\n")]

    def __str__(self):
         return "\n".join(["".join(x) for x in self.indexableMap])

    # Get the string representation of this map
    def getDisplay(self):
        return self.__str__()

    # Get map width
    def getWidth(self):
        return len(self.indexableMap[0])

    # Get map height
    def getHeight(self):
        return len(self.indexableMap)

    # Get unvisited destinations
    def getDestinations(self):
        destinations = []
        for y in xrange(1,self.getHeight()-1):
            for x in xrange(1,self.getWidth()-1):
                sigma = 2
                if self.get(x,y)=="M":
                    sigma = len(self.getConnections(x,y,"M"))
                    if sigma==0:
                        destinations.append((x,y))
        return destinations

    # Get the x,y of the goal (endpoint)
    def getGoal(self):
        for y in xrange(self.getHeight()):
            for x in xrange(self.getWidth()):
                if self.get(x,y)==">":
                    return (x,y)

    # Get the x,y of the current location
    def getLocation(self):
        location = None
        for y in xrange(0,self.getHeight()-1):
            for x in xrange(0,self.getWidth()-1):
                track = self.get(x,y)
                sigma = len(self.getConnections(x,y,track))
                if track == ">":
                    if sigma==0:
                        location = (x,y)
                    sigma = 0
                if sigma == 1:
                    return (x,y)
        if location != None:
            return location
        raise ValueError('No location found in map\n'+self.getDisplay())

    # Get the terrian at x,y
    def get(self,x,y):
        return self.indexableMap[y][x]

    # Set the terrain at x,y
    # (non-destructive)
    def set(self,x,y,value):
        newMap = [[i for i in row] for row in self.indexableMap]
        newMap[y][x] = value
        return "\n".join(["".join(x) for x in newMap])

    # Get the track connectioning to a piece of track at x,y
    def getConnections(self,x,y,track):
        connections = []
        tracks = []
        for a,b in set(permutations([-1,-1,0,1,1],2)):
            outtrack = self.get(x+a,y+b)
            if Map.isTrack(outtrack) and Map.isConnected("",0,0,track,a,b,outtrack):
                tracks+=[[outtrack,a,b]]
        if len(tracks)==1:return [tracks[0][0]]
        if len(tracks)==0:return []

        for inner,outer in permutations(tracks,2):
            intrack,relXin,relYin = inner
            other,relX,relY = outer
            ex = x + relX
            ey = y + relY
            if Map.isConnected(intrack,relXin,relYin,track,relX,relY,other):
                if other == "M":
                    if len(self.getConnections(ex,ey,other))>=1:
                        connections.append(other)
                else:
                    connections.append(other)
        return connections

    # Is could a piece of track at x,y build in
    # the direct of relX,relY?
    def isBlocked(self,x,y,relX,relY):
        if relX==0 or relY==0:
            return False
        side1 = self.get(x+relX,y)
        side2 = self.get(x,y+relY)
        return (Map.isTrack(side1) or side1=="M")  and (Map.isTrack(side2) or side2=="M")

Aktualizacje

  • -560 [17-03-31] Kilka podstawowych golfów wyrażeń regularnych
  • +982 [17-03-31] Naprawiono nielegalne układanie torów. Dzięki @ fəˈnɛtɪk !
  • -99 [17-03-31] Wykorzystano ;s
Nieliniowe Owoce
źródło
Zmień nazwy zmiennych dla golfa moar;)
Matthew Roh,
6
Powinieneś być w stanie zagrać w golfa bardziej, używając kombinacji spacji i tabulatorów do wcięcia
John Dvorak
2
Dwie linie zaczynające się od elif e!=""and e in"MX>"mogą być połączone w jedną linię z trójskładnikiem if else. Również niektóre z twoich defmogą być lambda. Jak def A(s):return str(s)może być A=lambda s:str(s), lub jeśli zmieni się z __str__celu __repr__można użyć A=lambda s:`s`, w którym momencie, to nie będzie nawet warto mieć Aw swojej funkcji, gdyż wymaga nawiasów do wywołania. Zamiast tego użyj po prostu backicksa.
mbomb007
Kod próbuje nielegalnych ruchów podczas budowania mostów. Nie mogę powiedzieć na pewno, że jest to problem, ponieważ kończy przypadki testowe prawidłowymi ścieżkami.
fəˈnɛtɪk
Co! Nie miałem pojęcia, że ​​tak się stało. Próbowałem to zrobić i nigdy nie skończyłem, ale dobra robota!
Christopher