Najmniejsza wielokrotność z serii 9, a następnie opcjonalna seria 0

22

Biorąc pod uwagę dodatnią liczbę całkowitą, znajdź jej najmniejszą wielokrotność dodatnią liczbę całkowitą, która jest przebiegiem 9, a następnie opcjonalnym przebiegiem 0. Innymi słowy, znajdź jego najmniejszą dodatnią liczbę całkowitą, która jest dopasowana przez wyrażenie regularne /^9+0*$/.

Na przykład, jeśli podaną dodatnią liczbą całkowitą jest 2, to zwróć 90, ponieważ 90 jest dodatnią liczbą całkowitą wielokrotności 2 i jest najmniejszą z wyrażeń regularnych /^9+0*$/.

Przypadki testowe:

n  f(n)
1  9
2  90
3  9
4  900
5  90
6  90
7  999999
8  9000
9  9
10 90
11 99
12 900
13 999999
14 9999990
15 90
16 90000

To jest . Najkrótsza odpowiedź w bajtach wygrywa. Obowiązują standardowe luki .

Leaky Nun
źródło
3
dowód dobrej definicji?
Destructible Lemon
2
@DestructibleLemon Ten dowód jest wystarczający, ponieważ wynik można pomnożyć przez 9.
xnor
1
Myślę, że więcej przypadków testowych byłoby dobrym rozwiązaniem, aby sprawdzić, czy rozwiązania wymagają, aby cyfry 9 pojawiły się przed zerami.
xnor
2
@LeakyNun może nie, ale 9900099 jest i nie powinno być dozwolone zgodnie z regułami.
DrQuarius
2
@koita_pisw_sou regułą jest, że program powinien „teoretycznie” działać dla dowolnej liczby całkowitej, biorąc pod uwagę dowolną precyzję, pamięć i czas.
Leaky Nun

Odpowiedzi:

6

Galaretka , 13 11 bajtów

ṚḌ‘DS=ḍ@ð1#

Wypróbuj online!

Jak to działa

ṚḌ‘DS=ḍ@ð1#  Main link. Argument: n

        ð    Start a dyadic chain with arguments n and n.
         1#  Execute the chain to the left with left argument k = n, n+1, n+2, ...
             and right argument n until 1 match has been found. Return the match.
Ṛ                Get the decimal digits of k, reversed.
 Ḍ               Convert from base 10 to integer.
                 This essentially removes trailing zeroes. As a side effect, it
                 reverses the digits, which doesn't matter to us.
  ‘              Increment the resulting integer. If and only if it consisted
                 entirely of 9's, the result is a power of 10.
   DS            Compute the sum of the digits. The sum is 1 if and only if the
                 integer is a power of 10. Note that the sum cannot be 0.
      ḍ@         Test k for divisibility by n.
     =           Compare the results.
Dennis
źródło
4
ಠ_ಠ jak to zrobiłeś z ani 9czy 0w kodzie
Pavel
Dodałem wyjaśnienie.
Dennis,
6

Python 2 , 55 54 bajtów

n=r=input()
while int(`10*r`.lstrip('9')):r+=n
print r

Wypróbuj online!

Dennis
źródło
Nie tylko musisz nas wszystkich prześcignąć, ale musisz to zrobić w Pythonie ... 3 razy ...: P
HyperNeutrino
5

JavaScript (ES6), 47 43 42 bajtów

-4 bajty dzięki @Arnauld
-1 bajtów dzięki @Luke

n=>eval('for(i=0;!/^9+0*$/.test(i);)i+=n')

Testy

let f=
n=>eval('for(i=0;!/^9+0*$/.test(i);)i+=n')

for(let i=1;i<=16;i++)console.log(`f(${i}) = `+f(i))

Rozwiązanie rekurencyjne (błąd 7, 13 i 14), 38 bajtów

n=>g=(i=0)=>/^9+0*$/.test(i+=n)?i:g(i)

Nazywa się jak f(5)(). Osiąga maksymalny rozmiar stosu wywołań w Chrome i Firefox dla n=7, n=13i n=14.

Justin Mariner
źródło
3
Jeden bajt krótszy:n=>eval('for(i=0;!/^9+0*$/.test(i);)i+=n')
Łukasz
4

Java 8, 61 57 bajtów

n->{int r=0;for(;!(""+r).matches("9+0*");r+=n);return r;}

-4 bajty (i szybsze wykonanie) dzięki @JollyJoker .

Wyjaśnienie:

Wypróbuj tutaj.

n->{                              // Method with integer as parameter and return-type
  int r=0;                        //  Result-integer
  for(;!(""+r).matches("9+0*");   //  Loop as long as `r` doesn't match the regex
    r+=n                          //   And increase `r` by the input every iteration
  );                              //  End of loop
  return r;                       //  Return the result-integer
}                                 // End of method
Kevin Cruijssen
źródło
Tak, do optymalizacji! ^^
Olivier Grégoire,
1
Zwiększenie o n pozwala uniknąć r%nczeku,n->{int r=0;for(;!(""+(r+=n)).matches("9+0*"););return r;}
JollyJoker,
for(;!(""+r).matches("9+0*");r+=n)
JollyJoker,
Próbowałem i starałem się radzić sobie z liczbami całkowitymi i matematyką, ale nie mogę tego pokonać! Gratulacje :)
Olivier Grégoire,
3

Brachylog , 16 bajtów

;I×≜.ẹḅhᵐc~a₀90∧

Wypróbuj online!

To jest dość powolne

Wyjaśnienie

;I×≜.              Output = Input × I
    .ẹḅ            Deconcatenate into runs of consecutive equal digits
       hᵐ          Take the head of each run
         c         Concatenate into a number
          ~a₀90∧   That number is a prefix of 90 (i.e. it's 9 or 90)
Fatalizować
źródło
3

05AB1E , 10 bajtów

0[+D9Û0«_#

Wypróbuj online!

Po prostu dodaje wartość wejściową do 0, aż wynik minus wiodące 9 równa się 0.

kalsowerus
źródło
2

RProgN 2 , 18 bajtów

x={x*'^9+0*$'E}éx*

Wyjaśnił

x={x*'^9+0*$'E}éx*
x=                  # Set the value of "x" to the input.
  {           }é    # Find the first positive integer in which passing it to the defined function returns truthy.
   x*               # Multiply the index by x, this essentially searches multiples now.
     '^9+0*$'       # A Regex defined by a literal string.
             E      # Does the multiple match the regex?
                x*  # Multiple the outputted index by x, giving the result.

Wypróbuj online!

ATaco
źródło
2

Matematyka , 71 bajtów

(x=#;While[!StringMatchQ[ToString@x,RegularExpression@"9+0*"],x+=#];x)&

Wypróbuj online!

Niezbyt interesujące rozwiązanie brutalnej siły, ale przewyższa drugą odpowiedź Mathematiki, która wykorzystuje kilka sprytnych sztuczek.

The one redeeming quality Mathematica has in regards to this challenge is the fact that StringMatchQ requires a full match, so I can do 9+0* rather than ^9+0*$.

Pavel
źródło
2
If you're willing to use Mathematica instead of Mathics, you can save a few bytes with "9"..~~"0"... instead of RegularExpression@"9+0*".
Not a tree
1
@Notatree thanks, I'll keep it in mind for a later time, but I'll stick with Mathics. I prefer not to use syntax I don't understand, and that's the first time I've seen syntax like that.
Pavel
Fair enough. (Mathematica's pattern matching syntax is a powerful tool, but if you're familiar with regular expressions you probably already know that!)
Not a tree
2

Batch, 175 bytes

@set/pn=
@set s=
:g
@set/ag=-~!(n%%2)*(!(n%%5)*4+1)
@if not %g%==1 set s=0%s%&set/an/=g&goto g
@set r=1
:r
@set s=9%s%
@set/ar=r*10%%n
@if %r% gtr 1 goto r
@echo %s%

Takes input on STDIN. Not a brute force solution but in fact based on my answer to Fraction to exact decimal so it will work for 17, 19, etc. which would otherwise exceed its integer limit anyway.

Neil
źródło
2

Mathematica, 127 bytes

Select[FromDigits/@Select[Tuples[{0,9},c=#],Count[#,9]==1||Union@Differences@Flatten@Position[#,9]=={1}&],IntegerQ[#/c]&][[1]]&


Input

[17]

Output

9999999999999999

here are the first 20 terms

{9, 90, 9, 900, 90, 90, 999999, 9000, 9, 90, 99, 900, 999999, 9999990, 90, 90000, 9999999999999999, 90, 999999999999999999, 900}

J42161217
źródło
1
Clever, but the obvious solution seems to be the shortest: codegolf.stackexchange.com/a/130115/60042
Pavel
your obvious solution can't do 17 ;-)
J42161217
What can I say, not fastest-code
Pavel
By the way, your solution works in Mathics, you could change it to that and add a TIO link.
Pavel
2

Haskell, 53 bytes

f takes and returns an integer.

f n=filter(all(<'1').snd.span(>'8').show)[n,n+n..]!!0

Try it online!

This times out for 17, which conveniently is just beyond the test cases. A faster version in 56 bytes:

f n=[x|a<-[1..],b<-[0..a-1],x<-[10^a-10^b],mod x n<1]!!0

Try it online!

How it works

  • f generates all multiples of n, converts each to a string, filters out those with the right format, then takes the first one.

  • The faster version instead uses that the required numbers are of the form 10^a-10^b, a>=1, a>b>=0. For golfing purposes it also uses the fact that for the minimal a, only one b can work, which allows it to generate the bs in the slightly shorter "wrong" order.

Ørjan Johansen
źródło
1

Ruby, 38 + 1 = 39 bytes

Uses -p flag.

$_=y=eval$_
1until"#{$_+=y}"=~/^9+0*$/

-p surrounds the program with:

while gets
    ...
end
puts $_

gets stores its result in $_. eval is used to convert it to a number, as it's shorter than .to_i, then brute force is used, incrementing $_ until it matches the regex. "#{}" is sttring interpolation, it's shorter than a .to_s call as that would require parantheses around $_+=y. Finally, $_ is printed.

Try it online!

Try all test cases!

Pavel
źródło
1

Dyalog APL, 34 bytes

{∧/'0'=('^9+'⎕R'')⊢⍕⍵:⍵⋄∇⍵+r}n←r←⎕

Recursive dfns, based on Dennis' Python solution.

Uriel
źródło
1

C++, 106 bytes

int main(){long N,T=9,j=10,M;cin>>N;while(T%N){if(T/j){T+=(M/j);j*=10;}else{T=(T+1)*9;j=10;M=T;}}cout<<T;}

Detailed Form:

int main()
{
    long N,T=9,j=10,M;
    cin >> N;

    while (T%N)
    {
        if (T/j)
        {
            T += (M/j);
            j *= 10;
        }
        else
        {
            T = (T+1)*9;
            j = 10;
            M = T;
        }
    } 

    cout << T;
}

TRY it online!

koita_pisw_sou
źródło
Better golfed: [](int n){int T=9,j=10,m;while(t%n)if(t/j){t+=m/j;j*=10;}else{t=(t+1)*9;j=10;m=t;}return t;}}, takes 94 bytes. Essentially, treat it as a function task to save bytes, save up on unneeded parentheses, use lambda function to save on type naming and type.
enedil
can't make it compile using lambda. could u give a hand?
koita_pisw_sou
It may be the reason that I put too amuch parentheses on the end.
enedil
In addition, lambda probably has not to exist in global scope, even though wrapping it into regular function takes 97 bytes.
enedil
1

Python 2, 79 bytes

x=input();n=10;y=9
while y%x:
 b=n
 while(b-1)*(y%x):b/=10;y=n-b
 n*=10
print y

Try it online!

Some explanations It finds the smallest natural of form 10**n-10**b with n>b>=0 that divides the input.

Some IO

f(1) = 9
f(2) = 90
f(3) = 9
f(4) = 900
f(5) = 90
f(6) = 90
f(7) = 999999
f(8) = 9000
f(9) = 9
f(10) = 90
f(11) = 99
f(12) = 900
f(13) = 999999
f(14) = 9999990
f(15) = 90
f(16) = 90000
f(17) = 9999999999999999
f(18) = 90
f(19) = 999999999999999999
mdahmoune
źródło
1

Swift 3.0, Bytes:121

var i=2,m=1,n=""
while(i>0){n=String(i*m)
if let r=n.range(of:"^9+0*$",options:.regularExpression){print(n)
break};m=m+1}

Try it online!

A. Pooja
źródło
What does let r= do? I don't see r referred to anywhere else
Cyoce
@Cyoce let r= checks whether the n.range returns value nil or not.You can use let _=.I am using optional binding here to reduce no of bytes.
A. Pooja
1

Python 3, 62 bytes

This function takes an integer n and initializes m to zero. Then it removes all zeros from the ends of m and checks if the result only contains 9's, returning m if it does. If not, it adds n to m and checks again, etc.

def f(n,m=0):
 while{*str(m).strip('0')}!={'9'}:m+=n
 return m

Try it online!

C McAvoy
źródło
1

Java (OpenJDK 8), 66 bytes, doesn't choke on 17

n->{long a=10,b=1;for(;(a-b)%n>0;b=(b<10?a*=10:b)/10);return a-b;}

Try it online!

Longer than @KevinCruijssen's solution but can handle slightly larger numbers. It calculates the candidate numbers like 10^6 - 10^3 = 999000. 64-bit longs are still the limit, breaking for n=23.

Can probably be golfed a bit but already took too long to make it work...

JollyJoker
źródło
1

><>, 35 bytes

&a:v ;n-<
:,a/?(1:^!?%&:&-}:{
a*:\~

Try it online, or watch it at the fish playground!

Assumes the input is already on the stack. Works by looking for numbers of the form 10a − 10b, with a < b (yes, that's a less than sign — it takes fewer bytes!) until that's divisible by the input, then printing 10b − 10a. This is much faster than the brute force method (which would be difficult in ><> anyway).

Not a tree
źródło
1

V, 19 14 bytes

é0òÀ/[1-8]ü09

Try it online!

Explanation

é0              ' <m-i>nsert a 0
  ò             ' <m-r>ecursively
   À            ' <m-@>rgument times
               ' <C-A> increment the number (eventually gives all multiples)
     /[1-8]ü09  ' find ([1-8]|09) if this errors, the number is of the form
                ' (9+0*) (because there won't ever be just zeros)
                ' implicitly end the recursion which breaks on the above error
nmjcman101
źródło
1

JavaScript (ES6), 51 49 bytes

let
f=(n,x=1,y=1)=>(x-y)%n?f(n,x,y*10):x-y||f(n,x*10)
<input type=number value=1 step=1 min=1 oninput=O.value=f(value)>
<input type=number value=9 id=O disabled>

Not the shortest approach, but it is wicked fast.

ETHproductions
źródło
1

Mathematica, 82 bytes

Using the pattern of submission from @Jenny_mathy 's answer...

(d=x=1;y=0;f:=(10^x-1)10^y;n:=If[y>0,y--;x++,y=d;d++;x=1];While[Mod[f,#]!=0,n];f)&

Input:

[17]

Output:

9999999999999999

And relative to the argument in comments at @Jenny_mathy's answer with @Phoenix ... RepeatedTiming[] of application to the input [17] gives

{0.000518, 9999999999999999}

so half a millisecond. Going to a slightly larger input, [2003] :

{3.78, 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999}

a bit under 4 seconds.

Test table: On the first 30 positive integers, the results are

{9, 90, 9, 900, 90, 90, 999999, 9000, 9, 90, 99, 900, 999999, 
9999990, 90, 90000, 9999999999999999, 90, 999999999999999999, 900, 
999999, 990, 9999999999999999999999, 9000, 900, 9999990, 999, 
99999900, 9999999999999999999999999999, 90}

Explanation: The only magic here is the custom iterator ("iterator" in the CS sense, not the M'ma sense)

n := If[ y>0  ,  y-- ; x++  ,  y=d ; d++ ; x=1]

which acts on the global variables x, the number of leading "9"s, y, the number of trailing "0"s, and d, the total number of digits. We wish to iterate through the number of digits, and, for each choice of number of digits, start with the most "0"s and the least "9"s. Thus the first thing the code does is initialize d to 1, forcing x to 1 and y to 0. The custom iterator checks that the string of "0"s can be shortened. If so, it shortens the string of "0"s by one and increases the string of "1"s by one. If not, it increments the number of digits, sets the number of "0"s to one less than the number of digits, and sets the number of "9"s to 1. (This is actually done in a slightly different order to shave a few characters, since the old value of d is the desired value of y.)

Eric Towers
źródło
And yet, still longer than brute force and regex.
Pavel
@Phoenix : So what's your timing on 2003?
Eric Towers
1

Ti-Basic (TI-84 Plus CE), 48 41 bytes

Prompt X
For(K,1,0
For(M,-K+1,0
10^(K)-10^(-M
If 0=remainder(Ans,X
Return
End
End

Input is Prompt-ed during the program; output is stored in Ans.

Explanation:

Tries numbers of the form (10n)(10m-1) = 10k-10m, where m+n=k starts at 1 and increases, and for each value of k, it tries m=1,n=k-1; m=2,n=k-2; ... m=k,n=0; until it finds a multiple of X.

This works up to 16; 17 gives a domain error because remainder( can only accept dividends up to 9999999999999 (13 nines), and 17 should output 9999999999999999 (16 nines).

Prompt X               # 3 bytes, input number
For(K,1,0              # 7 bytes, k in the description above; until a match is found
For(M,-K+1,0           # 10 bytes, start with n=1, m=(k-n)=k-1;
                           # then n=2, m=(k-n)=k-2, up to n=k, m=(k-n)=0
                           # (M=-m because it saved one byte)
10^(K)-10^(-M           # 8 bytes, n=(k-m) nines followed by m zeroes → Ans
If not(remainder(Ans,X # 8 bytes, If X is a factor of Ans (remainder = 0)
Return                 # 2 bytes, End program, with Ans still there
End                    # 2 bytes,
End                    # 1 byte (no newline)
pizzapants184
źródło
1

QBIC, 53 bytes

{p=p+1┘o=p*9_F!o$|┘n=!A!~(_l!n$|=_l!n+1$|)-(o%:)|\_Xo

Explanation

{        infinitely DO
p=p+1    raise p (starts out as 0)
┘o=p*9   Get the mext multiple of 9 off of p
_F!o$|   Flip a string representation of p*9
┘n=!A!   and set 'n' to be an int version of the flipped p*9 
         (this effectively drops trailing 0's)
~        This IF will subtract two values: the first is either 0 for n=x^10, or -1
         and the second bit does (p*9) modulo 'a' (input number): also 0 for the numbers we want
(
 _l!n$|  the length of n's string representation
=        is equal to
_l!n+1$| the length of (n+1)'s string rep (81 + 1 = 82, both are 2 long; 99 + 1 = 100, there's a difference)
)        The above yields -1 (Qbasic's TRUE value) for non-9 runs, 0 for n=x^10
-        Subtract from that 
(o%:)    (p*9) modulo a     0 for p*9 = a*y
|       THEN (do nothing, since we want 0+0=0 in the conditionals above, execution of the right path jumps to ELSE
\_Xo    ELSE quit, printing (p*9)
steenbergh
źródło
1

C (gcc), 126 bytes

#include<stdio.h>
main(x,n,y,b){n=10;y=9;scanf("%d",&x);while(y%x){b=n;while((b-1)*(y%x)){b/=10;y=n-b;}n*=10;}printf("%d",y);}

Try it online!

Some explanations It finds the smallest natural of form 10**n-10**b with n>b>=0 that divides the input.

Some IO

f(1) = 9
f(2) = 90
f(3) = 9
f(4) = 900
f(5) = 90
f(6) = 90
f(7) = 999999
f(8) = 9000
f(9) = 9
f(10) = 90
f(11) = 99
f(12) = 900
f(13) = 999999
f(14) = 9999990
f(15) = 90
f(16) = 90000
mdahmoune
źródło
1

Perl 5, 23 + 2 (-pa) = 25 bytes

Brute Force Method

$_+=$F[0]while!/^9+0*$/

Try it online!

It's slow, but it's tiny.

More Efficient Method:

41 + 2 (-pa) = 43 bytes

$_=9;s/0/9/||($_=9 .y/9/0/r)while$_%$F[0]

Try it online!

It works well for any input, but it's longer code.

Xcali
źródło