Kompresowanie energii jonizacji atomowej

22

Jest to inny rodzaj wyzwania kompresji. W normalnym wymagane jest dokładne odtworzenie listy. Tutaj możesz zaokrąglać wartości w dowolny sposób. Jaki jest haczyk? Twój wynik jest karany na podstawie tego, jak błędny jest twój wynik.

Na dole tego pytania znajduje się lista pierwszych energii jonizacji dla pierwszych 108 pierwiastków. Twój program po uruchomieniu powinien wypisać dość dokładną kopię tej listy. Nie będzie żadnych danych wejściowych ani argumentów. Dla celów punktacji twój wynik powinien być deterministyczny (ten sam wynik za każdym razem).

Format wyjściowy

Twój program / funkcja musi wypisać listę 108 liczb, posortowaną według rosnącej liczby atomowej. Ta lista może mieć dowolny odpowiedni format. Poniższe dane źródłowe podano we właściwej kolejności, od wodoru po hass.

Punktacja

Twój wynik będzie równy długości twojego programu w bajtach plus kara zaokrąglająca. Kara zaokrąglająca jest obliczana dla każdego elementu i sumowana, aby dać karę całkowitą.

Jako przykład weźmy liczbę 11.81381. Powiedzmy, że twój program wyświetla niepoprawną wartość 11.81299999.

  1. Po pierwsze, oba numery są mnożone przez tę samą moc 10 tak, że nie ma już punkt dziesiętny w prawdziwej wartości: 1181381, 1181299.999. Zera końcowe w prawdziwej wartości są uważane za znaczące.

  2. Następnie, bezwzględna różnica zostanie podjęta w celu określenia bezwzględnej błędu: 81.001.

  3. Na koniec obliczamy karę tego elementu jako max(0, log10(err * 4 - 1)) -> 2.50921. Ta formuła została wybrana w taki sposób, że błąd <0,5 nie daje żadnej kary (ponieważ odpowiedź jest poprawna w zaokrąglaniu), a jednocześnie daje asymptotyczną 50% szansę, że zaokrąglenie liczby do dowolnego miejsca po przecinku zapewni korzyść netto w wyniku (zakładając, że nie inna kompresja).

Oto implementacja programu do obliczania kar w Try-It-Online . Dane wejściowe do tego programu są dostarczane jako lista liczb, po jednej w wierszu. Rezultatem tego programu jest łączna kara i podział punktacji na element.

Dane

Poniższa lista liczb to dane docelowe w prawidłowej kolejności od liczby atomowej 1 do 108.

Źródło

13.598434005136
24.587387936
5.391714761
9.322699
8.2980190
11.260296
14.53413
13.618054
17.42282
21.564540
5.1390767
7.646235
5.985768
8.151683
10.486686
10.36001
12.96763
15.7596112
4.34066354
6.11315520
6.56149
6.82812
6.746187
6.76651
7.434018
7.9024678
7.88101
7.639877
7.726380
9.3941990
5.9993018
7.899435
9.7886
9.752392
11.81381
13.9996049
4.177128
5.69486720
6.21726
6.63390
6.75885
7.09243
7.11938
7.36050
7.45890
8.33686
7.576234
8.993822
5.7863552
7.343917
8.608389
9.00966
10.45126
12.1298431
3.893905548
5.211664
5.5769
5.5386
5.473
5.5250
5.582
5.64371
5.670385
6.14980
5.8638
5.93905
6.0215
6.1077
6.18431
6.254159
5.425871
6.825069
7.549571
7.86403
7.83352
8.43823
8.96702
8.95883
9.225553
10.437504
6.1082871
7.4166796
7.285516
8.414
9.31751
10.7485
4.0727409
5.278424
5.380226
6.3067
5.89
6.19405
6.2655
6.0258
5.9738
5.9914
6.1978
6.2817
6.3676
6.50
6.58
6.65
4.90
6.01
6.8
7.8
7.7
7.6

Linie podstawowe i wskazówki

Powyższe dane źródłowe to 906 bajtów, a niektóre narzędzia do kompresji są w stanie doprowadzić je do mniej niż 500 bajtów. Ciekawymi rozwiązaniami są te, które próbują wykonać inteligentne zaokrąglanie, użyć wzorów algebraicznych lub innych technik w celu uzyskania przybliżonych wartości w mniejszej liczbie bajtów niż sama kompresja. Trudno jest jednak ocenić te kompromisy między językami: dla niektórych języków sama kompresja może być optymalna, podczas gdy w wielu innych językach mogą brakować narzędzi do kompresji, więc spodziewam się dużej różnorodności wyników w różnych językach. To dobrze, ponieważ przechodzę przez filozofię „rywalizacji w językach, a nie między nimi”.

Przewiduję, że przydatne może być wykorzystanie trendów w układzie okresowym. Poniżej znajduje się wykres energii jonizacji, dzięki czemu można zobaczyć niektóre z tych trendów.

wprowadź opis zdjęcia tutaj

PhiNotPi
źródło
2
Hm, wykres pokazuje kilka interesujących trendów, może to pomaga w kompresji ...
Erik the Outgolfer
3
Uwaga dodatkowa: jest to dość eksperymentalne wyzwanie. Schemat punktacji jest wyjątkowy, mam nadzieję, że się sprawdzi.
PhiNotPi
Bardzo fajne wyzwanie. Niestety dokładność referencji jest tak wysoka, że ​​formuły aproksymacji motywowane fizycznie (których tak naprawdę nie można przewidzieć więcej niż dwóch cyfr) nie mają szans na konkurowanie z dosłowną kompresją cyfr. (Krótko od rozwiązania równania Schrödingera oczywiście, co również nie jest bardzo wykonalne.) Byłoby IMO bardziej interesujące bez logarytmu w formule karnej, tak że wysokie cyfry są w rzeczywistości ważniejsze, aby poprawnie uzyskać rację.
przestał się obracać przeciwnie do zegara
@PhiNotPi System punktacji nie jest to wyjątkowy, prawda ?
Esolanging Fruit
1
@EsolangingFruit Tak, widzę podobieństwa. Myślę, że jest to wyjątkowe, ponieważ kara jest „ciągła”, co oznacza, że ​​nie masz po prostu racji ani błędu w odniesieniu do żadnego konkretnego wyniku, więc chodzi o to, aby dowiedzieć się, ile powinieneś sfałszować każdą liczbę. (Ten schemat punktacji był o wiele bardziej wyjątkowy w 2015 r., Kiedy po raz pierwszy go w piaskownicy, lol.)
PhiNotPi

Odpowiedzi:

6

Czysty , 540 bajtów + 64,396 Kara = 604,396

Uwaga: ze względu na czytelność uniknąłem każdego bajtu w [Char]literale, ponieważ większości z nich nie można wydrukować. Są one jednak liczone jako jeden bajt na znak zmiany znaczenia (z wyjątkiem wartości null, quote i newline), ponieważ Clean naturalnie pobiera pliki źródłowe kodowane niezależnie (z wyjątkiem wartości null).

import StdEnv,GenLib
c[h:t]=[(toInt h>>i)rem 2\\i<-[0..7]]++c t
c[]=[]
r[]=[]
r l=[7<<29+2^62+sum[d<<p\\d<-l&p<-[32..53]]:r(drop 22l)]
u::Maybe[Real]
u=uncompress{e\\e<-[108:r(c['\145\062\353\227\045\336\021\131\341\224\212\225\230\140\121\241\231\027\321\306\361\254\075\154\161\041\144\255\346\110\371\126\172\155\361\127\152\023\350\222\117\116\341\222\155\357\351\072\341\153\315\025\171\317\141\367\076\232\377\323\206\301\257\235\103\154\157\274\035\010\347\167\142\370\355\074\172\320\347\036\165\262\210\364\177\025\144\176\303\223\143\116\340\270\012\172\062\377\257\141\265\320\342\261\225\347\215\165\044\152\017\011\133\251\027\347\243\307\231\304\165\351\325\035\036\053\010\341\344\131\363\207\072\045\327\012\130\347\167\023\312\023\210\013\347\244\236\020\172\153\362\370\142\123\276\116\226\341\211\245\105\136\145\146\130\367\123\026\312\244\225\347\152\225\145\142\207\164\227\145\360\105\140\201\041\271\141\273\274\230\020\101\166\101\133\171\063\155\302\062\036\061\335\147\130\365\175\201\203\035\357\341\272\172\270\067\047\002\200\223\342\156\230\253\152\347\105\322\335\117\203\220\242\342\316\137\311\247\004\155\164\124\131\205\325\203\116\306\365\170\325\032\143\337\017\331\232\006\266\122\176\305\334\137\214\312\130\035\110\306\206\227\001\000\150\353\121\132\146\246\226\231\071\365\050\140\063\063\333\314\314\307\314\354\231\231\171'])]}

Wypróbuj online!

To pierwsze wyzwanie, w którym mogłem wykorzystać ogólną zdolność kompresji Clean (technicznie nie kompresującą, to jest binarna serializacja), aby uzyskać rzeczywistą korzyść.

Zacząłem od [Real]- listy 64-bitowych liczb zmiennoprzecinkowych, tych z pytania. Po serializacji tej listy uprościłem 10 górnych bitów (które były takie same dla każdej liczby) i optymalną konfigurację dolnych 32 bitów na stałą 7<<29+2^62. Pozostałe 22 bity na liczbę zostały przetłumaczone na 2,75 znaków i zakodowane w postaci ciągu.

Pozostawia to całą skompresowaną stałą na zaledwie 302 bajtach , włączając każdą ucieczkę!

Obrzydliwe
źródło
1
Być może można uzyskać lepszą kompresję dzięki CleanSnappy; cloogle.org/src/#CleanSnappy/Snappy / github.com/camilstaps/CleanSnappy
5

Python 3 , 355 + 202 353 bajtów + 198 kara = 551

for i in'趐￵㠡愍噢甹靍跄땠㖀侙㹐哜洫毙蛿ꐏⴰ㾤䑎䜕䘻䙱䵤剄刋侈偯懌㹴刼旧斆竼醽⭼㭉䂹䔏䙜䧕䨝䲠䶦囊仟嶡㰽䱴妝巋泍繆⢉㙁㨎㦨㣺㦄㨜㫀㬈䀅㴋㷔㺯㾕䁡䄛㡼䜍亘凞册埘嵙嵃怊沨㾗䴵䯘垗惿濥⩦㛳㠂䆧㵑䁻䄺㺻㸰㹟䂅䅥䉊䎫䒀䔺㌃㺑䛊儳倩伞':print(ord(i)/2665)

Wypróbuj online!

Użyłem 0xffff (65535)jako górnej granicy, ponieważ jest to maksymalna wartość, którą można zapisać w jednym 3-bajtowym znaku Unicode.
Ponieważ najwyższa energia jonizacji wynosi ~ 24,587, daje to stosunek 2665.
Aby wygenerować sam łańcuch, użyłem fragmentu ''.join([chr(int(round(n*2665)))for n in ionization_energies])kodu (na python2 musisz użyć unichr), twoja konsola może, ale nie musi, być w stanie wydrukować znaków.


4-bajtowe znaki, 462 bajty + 99 kar = 561

for i in'򖛬􏿸𻩕񧈞񛳀񼤓򠲊򖩥󀯗󮣬𸶞񔥢񂍻񚋙񴀥񲦹򏝅򮕴𰁌񃨇񈥢񋢔񊨓񊶬񒏒񗚽񗋰񔡂񕞒񧻆񂗠񗘳񬒕񫸬򂬋򚷮𮍚𾿾񄱴񉘳񊱑񎝜񎰡񑛏񒠺񜎠񓳾񣟨񀀯񑏠񟎯񣪶񳧟򆋻𫄹𹩷𽬜𽑕𼢹𽇭𽰄𾛰𾮨񄂄񀷥񁬶񂧎񃤐񄚟񅋼𼁡񋠊񓡆񖿯񖪈񝖑񣌪񣆷񦃬񳝰񃤫񒃁񐦉񝅇񧄳񶹼𭃠𺙈𻡍񅱉񁊈񄡙񅓾񂪑񂅝񂑺񄤃񅟜񆜑񇺀񈲩񉤍𶍍񂟅񋎚񖒚񕋦񔄳':print(ord(i)/45312)

Wypróbuj online!
Ten sam pomysł, ale maksymalna wartość to0x110000

Pręt
źródło
Dlaczego pojedynczy trzy bajtowy znak Unicode może przechowywać tylko 0x100**2wartości, a nie 0x100**3?
Jonathan Frech
Powiedziałbym, że obecnie znana najwyższa liczba atomowa wynosi 118 - w tym przypadku najwyższą do rozważenia jest 108 - a nie ~ 24. Prawdopodobnie miałeś na myśli energię jonizacji w eV.
Jonathan Frech
@JathanathanFrech ma rację: UTF-8 jest tutaj złym wyborem. Inne kodowania są bardziej wydajne.
Dennis
4

C, 49 bajtów + 626,048 kary = 675,048

f(i){for(i=0;i<108;)printf("%f\n",5.5+i++/13%2);}

Wypróbuj online!

Steadybox
źródło
5
37 bajtów: f(i){for(i=0;i++<108;)printf("6\n");}; kara: 625.173330827107; ogółem = 662,173330827
Tsathoggua
1
@ Tsathoggua Hmm, myślałem, że spróbowałem i dostałem wyższą karę. Chyba się myliłem. f(i){for(i=0;i<108;)puts("6");}robi to samo w 31 bajtach.
Steadybox
Ty też potrzebujesz i++(w „31”), ale f(i){for(i=108;i;i--)puts("6");}ma 32.
Jonathan Allan
2
@JonathanAllan Whoops. f(i){for(i=108;i--;)puts("6");}wraca do 31.
Steadybox
4

CJam (389 bajtów + 33,09 kary => 422,09)

kodowane xxd:

0000000: 2256 3232 7c24 1bf9 7116 2f43 c82b 110e  "V22|$..q./C.+..
0000010: 6b93 4525 1cb3 4118 4afc 4d05 5c22 e15a  k.E%..A.J.M.\".Z
0000020: 11bc 563c 38e4 626c 1efb 6b10 c229 0e35  ..V<8.bl..k..).5
0000030: 873d 15df 2f71 36ca 404d 54d9 4979 17ba  .=../[email protected]..
0000040: 4938 a953 6fb6 5f04 75f0 5c22 5c6b 39e5  I8.So._.u.\"\k9.
0000050: 3073 6fbd 343e fb36 4fff 357c 8c36 10f3  0so.4>.6O.5|.6..
0000060: 3b3c 37cd 3f1c 10a1 3f06 933d 0f1d fa3d  ;<7.?...?..=...=
0000070: 67e8 4549 6a9c 2f7f 24be 3f99 4713 e147  g.EIj./.$.?.G..G
0000080: 011c e14f 20d5 577f 668d 2135 30c2 2d47  ...O .W.f.!50.-G
0000090: 45d1 315e bc35 8936 0987 385e d238 7a9f  E.1^.5.6..8^.8z.
00000a0: 3af1 3b55 f441 2cbc 3c4e 8843 7ceb 2e25  :.;U.A,.<N.C|..%
00000b0: 1d93 3a60 15f1 4237 3fb0 4404 f949 e750  ..:`..B7?.D..I.P
00000c0: 423d b21e 265b 7cf6 2958 df2c 4edf 2c27  B=..&[|.)X.,N.,'
00000d0: c32b e42c 992c d32d 1394 2d2e 3cd9 3119  .+.,.,.-..-.<.1.
00000e0: b22e 74c3 2f41 cb30 9630 6ea4 313c dd32  ..t./A.0.0n.1<.2
00000f0: 04a1 2b34 0be1 364c 6fb8 3c32 61af 3e74  ..+4..6Lo.<2a.>t
0000100: e23e 55c3 4160 af43 6f8e 436a f544 733d  .>U.A`.Co.Cj.Ds=
0000110: eb49 e030 6e71 b43b 2ad7 3a24 af41 d345  .I.0nq.;*.:$.A.E
0000120: 5c22 c84a 7f9d 204a 3ea5 2a1d 0dcb 2b05  \".J.. J>.*...+.
0000130: 2cfd 32ba af31 46da 320f ef30 1ab5 2fe5  ,.2..1F.2..0../.
0000140: 2ff7 314a c632 20ba 3278 b6b4 34d1 b5a7  /.1J.2 .2x..4...
0000150: b0b6 bebd bc22 7b69 3235 362b 3262 283b  ....."{i256+2b(;
0000160: 287d 2531 6125 7b32 253a 2b5f 323e 315c  (}%1a%{2%:+_2>1\
0000170: 2b32 6232 405f 2c33 2d5c 323c 3262 2d23  +2b2@_,3-\2<2b-#
0000180: 642f 4e7d 2f                             d/N}/

Zasadniczo tak jest

"MAGIC STRING"{i256+2b(;(}%1a%{2%:+_2>1\+2b2@_,3-\2<2b-#d/N}/

Używa niestandardowego formatu zmiennoprzecinkowego o zmiennej szerokości do przechowywania liczb. Wystarczą dwa bity wykładnika; mantysa dostaje od 5 do 47 bitów, w wielokrotnościach 7. Pozostały bit na bajt służy jako separator.

Wydaje się, że dochodzi do korupcji, gdy kopiuję magiczny ciąg, aby stworzyć demo online , dzięki czemu zyskuje około 2 punkty karne więcej. Będę musiał dowiedzieć się, jak zbudować adres URL bezpośrednio ...


Program generacyjny:

e# Score calculation
{1$`'.+'.%1=,10\#_@*@@*-z 4*1- 0e> ml10ml/0e>}:E;

q~]

e# Custom float format
e# Exponent goes from 2^1 to 2^4, so 2 bits
e# Each byte has 1 bit for continuation, so 7 bits available
e# That means the options for the mantissa are 5 bits, 12 bits, 19 bits, 26 bits, 33 bits, 40 bits, 47 bits
{
  :X
  0\{2/\)\_2<!}g
  e# Stack: exponent mantissa
  2 47#*i2b(;
  e# Stack: exponent mantissa-bits
  W%7/W%Wf%:M
  7,{
    )M<e_
    1_$+2b2@,#d/
  }%
  2 3$#f*
  X\f{E}
  _,,.+
  _:e<
  #)<

  \(4+2b(;\+e_7/
  _,,:!W%\.+2fb:c
}%
""*`

Demo online

Peter Taylor
źródło
Uwaga do siebie: stały punkt oszczędza około 1 punktu.
Peter Taylor
Uwaga do siebie: czy poprawianie ciągu w celu usunięcia znaku ucieczki "powoduje zbyt duży błąd, aby był tego wart?
Peter Taylor,
4

Galaretka ,  379 361  360 bajtów + 0 Kara = 360

-18 używając obserwacji Petera Taylora (wartości rzędu 10 mają wiodące 1 lub 2, podczas gdy wartości rzędu 1 nie mają).

<3Ḣ‘_L⁵*×Ḍ
“KẸ⁺dzⱮÑ2⁵İ2ṭ¬⁴²¬¶9°ß°øİẆGẊœ%X(¢ṆḢ/8¬Ɗ’b7µ18,-;_3+\⁺Ṭœṗ“SŒƥŻƭ°}MḋṘḥfyɼ{ṅĊLƝġœ⁺ḟ8ḶhỊDṭ&æ%*ɱ¬ =¦ẉ Qh"¶:ḌĊ€ĖṢė°ġṀƬmẓSṃ÷E⁴Ȥ⁼ḋ#ØĖḂ2øzẸżƈ¥Ȧƥ7¢®|ḳẊṆƙƲɦḟɼṖỊɲṁẉɗ6ẇSɗ⁴ẉİt]ẓeṆHṚƑ½>]ɦ~T¢~ẆẆA`/6ƭṡxṠKG£Ḅ+wḃḣỤw×ḌŻƲF>Ụ]5bJḤḟCḞİḶ|ȥ9Ỵ0ụKṗT⁴ƥƁṖı×ṄtTĊG©ṀḥṬƭʂd½ḊȦуŀṣ¹ʋṖẓYL²ṅṿ&ẏdDṬIɦỵ¹b,ḷṣƭ#P'µ{GTƇẹ¥L8SƥÑṆẈėẎßṀḷƓ⁷ðḳċ¿ḶM_ḲẈg9ḢĠi+LṭẹḲẎ¤g<ṘJJĿßæ⁺(ɲỴ3ɲgkSḃIƙṭ.Ỵ&_:cĿƝı’D¤Ç€

Wypróbuj online!

W jaki sposób?

Tworzy te dwie stałe (AKA nilads):

  • (A) wszystkie użyte cyfry dziesiętne (tzn. Wszystkie połączone liczby ignorują miejsce ich połączenia i separatory miejsc dziesiętnych), oraz
  • (B) liczba znaczących cyfr wykorzystywanych przez każdą liczbę

Następnie wykorzystuje je do zrekonstruowania reprezentacji liczb zmiennoprzecinkowych.

Pełny program ma następującą postać:

<3Ḣ‘_L⁵*×Ḍ
“...’b7µ18,-;_3+\⁺Ṭœṗ“...’D¤Ç€

(gdzie ...są zakodowane liczby do budowy B i A)
i działa w następujący sposób:

<3Ḣ‘_L⁵*×Ḍ - Link 1, conversion helper: list of digits  e.g. [1,2,9,6,7,6,3]
<3         - less than three?                                [1,1,0,0,0,0,0]
  Ḣ        - head                                            1
   ‘       - increment                                       2
     L     - length                                          7
    _      - subtract                                        -5
      ⁵    - literal ten                                     10
       *   - exponentiate                                    0.00001
         Ḍ - undecimal (convert from base 10)                1296763
        ×  - multiply                                        12.96763
           - i.e. go from digits to a number between 3 and 30

“...’b7µ18,-;_3+\⁺Ṭœṗ“...’D¤Ç€ - Main link: no arguments
“...’                          - base 250 literal = 16242329089425509505495393436399830365761075941410177200411131173280169129083782003564646
     b7                        - to base seven = [2,0,4,3,2,4,2,4,3,2,3,3,4,2,3,5,3,3,0,3,4,2,4,4,1,4,3,4,3,2,1,5,3,5,1,5,0,3,3,3,3,3,3,3,4,3,4,2,3,2,4,5,4,0,1,3,2,4,2,5,4,2,2,4,2,3,4,4,3,3,3,2,3,3,3,3,4,4,3,3,2,0,5,3,5,2,3,1,1,6,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3]
       µ                       - start a new monadic chain, call that x
        18,-                   - integer list literal = [18,-1]
            ;                  - concatenate with x = [18,-1,2,0,4,3,2,4,2,4,3,2,3,3,4,2,3,5,3,3,0,3,4,2,4,4,1,4,3,4,3,2,1,5,3,5,1,5,0,3,3,3,3,3,3,3,4,3,4,2,3,2,4,5,4,0,1,3,2,4,2,5,4,2,2,4,2,3,4,4,3,3,3,2,3,3,3,3,4,4,3,3,2,0,5,3,5,2,3,1,1,6,2,3,3,3,3,3,3,1,3,3,3,3,2,3,3]
             _3                - subtract three = [15,-4,-1,-3,1,0,-1,1,-1,1,0,-1,0,0,1,-1,0,2,0,0,-3,0,1,-1,1,1,-2,1,0,1,0,-1,-2,2,0,2,-2,2,-3,0,0,0,0,0,0,0,1,0,1,-1,0,-1,1,2,1,-3,-2,0,-1,1,-1,2,1,-1,-1,1,-1,0,1,1,0,0,0,-1,0,0,0,0,1,1,0,0,-1,-3,2,0,2,-1,0,-2,-2,3,-1,0,0,0,0,0,0,-2,0,0,0,0,-1,0,0]
                \              - cumulative reduce with:
               +               -   addition    = [15,11,10,7,8,8,7,8,7,8,8,7,7,7,8,7,7,9,9,9,6,6,7,6,7,8,6,7,7,8,8,7,5,7,7,9,7,9,6,6,6,6,6,6,6,6,7,7,8,7,7,6,7,9,10,7,5,5,4,5,4,6,7,6,5,6,5,5,6,7,7,7,7,6,6,6,6,6,7,8,8,8,7,4,6,6,8,7,7,5,3,6,5,5,5,5,5,5,5,3,3,3,3,3,2,2,2]
                               -                 ("B" significant figures, with 1 extra for the very first entry and a missing last entry)
                 ⁺             - repeat (the cumulative addition to get
                               -         partition positions) = [15,26,36,43,51,59,66,74,81,89,97,104,111,118,126,133,140,149,158,167,173,179,186,192,199,207,213,220,227,235,243,250,255,262,269,278,285,294,300,306,312,318,324,330,336,342,349,356,364,371,378,384,391,400,410,417,422,427,431,436,440,446,453,459,464,470,475,480,486,493,500,507,514,520,526,532,538,544,551,559,567,575,582,586,592,598,606,613,620,625,628,634,639,644,649,654,659,664,669,672,675,678,681,684,686,688,690]
                  Ṭ            - untruth (1s at those indices) = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1]
                           ¤   - nilad followed by link(s) as a nilad:
                     “...’     -   base 250 literal = 1359843400513624587387936539171476193226998298019011260296145341313618054174228221564540513907677646235598576881516831048668610360011296763157596112434066354611315520656149682812674618767665174340187902467878810176398777726380939419905999301878994359788697523921181381139996049417712856948672062172666339067588570924371193873605074589083368675762348993822578635527343917860838990096610451261212984313893905548521166455769553865473552505582564371567038561498058638593905602156107761843162541595425871682506975495717864037833528438238967028958839225553104375046108287174166796728551684149317511074854072740952784245380226630675896194056265560258597385991461978628176367665065866549060168787776
                          D    -   decimal (to base 10) = [1,3,5,9,8,4,3,4,0,0,5,1,3,6,2,4,5,8,7,3,8,7,9,3,6,5,3,9,1,7,1,4,7,6,1,9,3,2,2,6,9,9,8,2,9,8,0,1,9,0,1,1,2,6,0,2,9,6,1,4,5,3,4,1,3,1,3,6,1,8,0,5,4,1,7,4,2,2,8,2,2,1,5,6,4,5,4,0,5,1,3,9,0,7,6,7,7,6,4,6,2,3,5,5,9,8,5,7,6,8,8,1,5,1,6,8,3,1,0,4,8,6,6,8,6,1,0,3,6,0,0,1,1,2,9,6,7,6,3,1,5,7,5,9,6,1,1,2,4,3,4,0,6,6,3,5,4,6,1,1,3,1,5,5,2,0,6,5,6,1,4,9,6,8,2,8,1,2,6,7,4,6,1,8,7,6,7,6,6,5,1,7,4,3,4,0,1,8,7,9,0,2,4,6,7,8,7,8,8,1,0,1,7,6,3,9,8,7,7,7,7,2,6,3,8,0,9,3,9,4,1,9,9,0,5,9,9,9,3,0,1,8,7,8,9,9,4,3,5,9,7,8,8,6,9,7,5,2,3,9,2,1,1,8,1,3,8,1,1,3,9,9,9,6,0,4,9,4,1,7,7,1,2,8,5,6,9,4,8,6,7,2,0,6,2,1,7,2,6,6,6,3,3,9,0,6,7,5,8,8,5,7,0,9,2,4,3,7,1,1,9,3,8,7,3,6,0,5,0,7,4,5,8,9,0,8,3,3,6,8,6,7,5,7,6,2,3,4,8,9,9,3,8,2,2,5,7,8,6,3,5,5,2,7,3,4,3,9,1,7,8,6,0,8,3,8,9,9,0,0,9,6,6,1,0,4,5,1,2,6,1,2,1,2,9,8,4,3,1,3,8,9,3,9,0,5,5,4,8,5,2,1,1,6,6,4,5,5,7,6,9,5,5,3,8,6,5,4,7,3,5,5,2,5,0,5,5,8,2,5,6,4,3,7,1,5,6,7,0,3,8,5,6,1,4,9,8,0,5,8,6,3,8,5,9,3,9,0,5,6,0,2,1,5,6,1,0,7,7,6,1,8,4,3,1,6,2,5,4,1,5,9,5,4,2,5,8,7,1,6,8,2,5,0,6,9,7,5,4,9,5,7,1,7,8,6,4,0,3,7,8,3,3,5,2,8,4,3,8,2,3,8,9,6,7,0,2,8,9,5,8,8,3,9,2,2,5,5,5,3,1,0,4,3,7,5,0,4,6,1,0,8,2,8,7,1,7,4,1,6,6,7,9,6,7,2,8,5,5,1,6,8,4,1,4,9,3,1,7,5,1,1,0,7,4,8,5,4,0,7,2,7,4,0,9,5,2,7,8,4,2,4,5,3,8,0,2,2,6,6,3,0,6,7,5,8,9,6,1,9,4,0,5,6,2,6,5,5,6,0,2,5,8,5,9,7,3,8,5,9,9,1,4,6,1,9,7,8,6,2,8,1,7,6,3,6,7,6,6,5,0,6,5,8,6,6,5,4,9,0,6,0,1,6,8,7,8,7,7,7,6]
                               -                          ("A" all the required digits in order)
                   œṗ          - partition at truthy indices = [[1,3,5,9,8,4,3,4,0,0,5,1,3,6],[2,4,5,8,7,3,8,7,9,3,6],[5,3,9,1,7,1,4,7,6,1],[9,3,2,2,6,9,9],[8,2,9,8,0,1,9,0],[1,1,2,6,0,2,9,6],[1,4,5,3,4,1,3],[1,3,6,1,8,0,5,4],[1,7,4,2,2,8,2],[2,1,5,6,4,5,4,0],[5,1,3,9,0,7,6,7],[7,6,4,6,2,3,5],[5,9,8,5,7,6,8],[8,1,5,1,6,8,3],[1,0,4,8,6,6,8,6],[1,0,3,6,0,0,1],[1,2,9,6,7,6,3],[1,5,7,5,9,6,1,1,2],[4,3,4,0,6,6,3,5,4],[6,1,1,3,1,5,5,2,0],[6,5,6,1,4,9],[6,8,2,8,1,2],[6,7,4,6,1,8,7],[6,7,6,6,5,1],[7,4,3,4,0,1,8],[7,9,0,2,4,6,7,8],[7,8,8,1,0,1],[7,6,3,9,8,7,7],[7,7,2,6,3,8,0],[9,3,9,4,1,9,9,0],[5,9,9,9,3,0,1,8],[7,8,9,9,4,3,5],[9,7,8,8,6],[9,7,5,2,3,9,2],[1,1,8,1,3,8,1],[1,3,9,9,9,6,0,4,9],[4,1,7,7,1,2,8],[5,6,9,4,8,6,7,2,0],[6,2,1,7,2,6],[6,6,3,3,9,0],[6,7,5,8,8,5],[7,0,9,2,4,3],[7,1,1,9,3,8],[7,3,6,0,5,0],[7,4,5,8,9,0],[8,3,3,6,8,6],[7,5,7,6,2,3,4],[8,9,9,3,8,2,2],[5,7,8,6,3,5,5,2],[7,3,4,3,9,1,7],[8,6,0,8,3,8,9],[9,0,0,9,6,6],[1,0,4,5,1,2,6],[1,2,1,2,9,8,4,3,1],[3,8,9,3,9,0,5,5,4,8],[5,2,1,1,6,6,4],[5,5,7,6,9],[5,5,3,8,6],[5,4,7,3],[5,5,2,5,0],[5,5,8,2],[5,6,4,3,7,1],[5,6,7,0,3,8,5],[6,1,4,9,8,0],[5,8,6,3,8],[5,9,3,9,0,5],[6,0,2,1,5],[6,1,0,7,7],[6,1,8,4,3,1],[6,2,5,4,1,5,9],[5,4,2,5,8,7,1],[6,8,2,5,0,6,9],[7,5,4,9,5,7,1],[7,8,6,4,0,3],[7,8,3,3,5,2],[8,4,3,8,2,3],[8,9,6,7,0,2],[8,9,5,8,8,3],[9,2,2,5,5,5,3],[1,0,4,3,7,5,0,4],[6,1,0,8,2,8,7,1],[7,4,1,6,6,7,9,6],[7,2,8,5,5,1,6],[8,4,1,4],[9,3,1,7,5,1],[1,0,7,4,8,5],[4,0,7,2,7,4,0,9],[5,2,7,8,4,2,4],[5,3,8,0,2,2,6],[6,3,0,6,7],[5,8,9],[6,1,9,4,0,5],[6,2,6,5,5],[6,0,2,5,8],[5,9,7,3,8],[5,9,9,1,4],[6,1,9,7,8],[6,2,8,1,7],[6,3,6,7,6],[6,5,0],[6,5,8],[6,6,5],[4,9,0],[6,0,1],[6,8],[7,8],[7,7],[7,6]]
                            Ç€ - call the last link (1) as a monad for €ach = [13.598434005136,24.587387936000002,5.391714761,9.322699,8.298019,11.260295999999999,14.534129999999998,13.618053999999999,17.422819999999998,21.56454,5.1390766999999995,7.646235,5.985767999999999,8.151683,10.486686,10.360009999999999,12.96763,15.759611200000002,4.34066354,6.1131552000000005,6.561490000000001,6.82812,6.746187,6.76651,7.434018,7.902467799999999,7.881010000000001,7.639876999999999,7.72638,9.394199,5.9993018,7.8994349999999995,9.7886,9.752392,11.81381,13.9996049,4.177128,5.6948672,6.2172600000000005,6.633900000000001,6.758850000000001,7.09243,7.1193800000000005,7.360500000000001,7.458900000000001,8.336860000000001,7.5762339999999995,8.993822,5.7863552,7.343916999999999,8.608388999999999,9.00966,10.45126,12.129843099999999,3.893905548,5.211664,5.5769,5.538600000000001,5.473,5.525,5.582,5.6437100000000004,5.670385,6.149800000000001,5.8638,5.939050000000001,6.0215000000000005,6.1077,6.184310000000001,6.254159,5.425871,6.825069,7.549570999999999,7.8640300000000005,7.833520000000001,8.43823,8.967020000000002,8.95883,9.225553,10.437504,6.1082871,7.416679599999999,7.285515999999999,8.414,9.31751,10.7485,4.072740899999999,5.278423999999999,5.3802259999999995,6.3067,5.89,6.194050000000001,6.2655,6.0258,5.973800000000001,5.9914000000000005,6.1978,6.281700000000001,6.3676,6.5,6.58,6.65,4.9,6.01,6.800000000000001,7.800000000000001,7.7,7.6000000000000005]
Jonathan Allan
źródło
Bez względu na to, czy są rzędu 1 czy 10 ” jest łatwe: jeśli pierwsza cyfra to 1 lub 2, to jest rzędu 10. Czy to jeszcze bardziej pomaga w golfie, czy też taniej jest rozpakować trochę bitów?
Peter Taylor,
@PeterTaylor nie zauważył, że prawie na pewno zaoszczędzi trochę bajtów, dzięki!
Jonathan Allan
3

Galaretka , 116 bajtów + 429,796016684433 Kara = 545,796016684433

“tẏØA5X¶tɱḅÐ-ı3OMm⁾¦ȷ #""*00-.Bı0FF_y¤ß÷!"&&)+5,=æ)8=Nc¡ÑÞŒŒŒÞßßñçðıȷñ÷Ø#,//6==@Nȷ*(6AR£ÑØøðñ÷ıııñ÷øþ !€ı#/-,‘+47÷12

Wypróbuj online!

Nic szczególnie spektakularne, lista indeks kodu strony, “...‘(liczby z zakresu od 0 do 249), do których każdy dodamy 47 , +47a następnie podzielić przez 12 , ÷12.

Jonathan Allan
źródło
3

Galaretka , 164 bajty + 409,846 = 573,846

“?#4ß<Ʋƒ⁻µ`kḞÑ6{ɱ~.ṣ¬⁷Ḷlŀ⁸ẎṘ£ỌgfĖỌƒ⁻ḋN?ḤḞ{ị#qp⁵mp&WṘƙ=/rŻ-vn⁼ẊTị}W;!z€ȦMẊẇİ_D8ỴtṫQAẎḣṬr¥1J3Ƙ~ʋ$ĿẠ7þƭ8ṛM{ịḟƇỵ÷b?°6I@?Ȥ⁾d⁹DẈcȷv5ⱮAJb}øDȯRµ’Ds3Ḍ÷³×⁵$2R;6r⁵¤¤;15r18¤¤¦Y

Wypróbuj online!

Jest tam skompresowana liczba, która jest konkatenacją pierwszych trzech cyfr każdej energii (łącznie z końcowymi zerami). Otrzymuję listę tych trzycyfrowych liczb, a Ds3Ḍnastępnie dzielę każdą przez 100 za pomocą ÷³. Niektóre liczby powinny być podzielone tylko przez 10, więc mnożę niektóre z nich przez 10, aby nieznacznie poprawić wynik ( ×⁵$2R;6r⁵¤¤;15r18¤¤¦).

Poprzednia wersja :

Galaretka , 50 bajtów + 571,482 kary = 621,482

“¡9;ẋkñ¬nƑḳ_gÐ.RḊụʠṁṬl⁾l>ɼXZĖSṠƈ;cḶ=ß³ṾAiʠʠɼZÞ⁹’DY

Wypróbuj online!

Zaokrąglono każdą energię do najbliższej jednocyfrowej liczby całkowitej. Po połączeniu daje to 995989999958689999467777788889689999466777777889679999456656666666666657888899996778994556666666666677567888. “¡9;ẋkñ¬nƑḳ_gÐ.RḊụʠṁṬl⁾l>ɼXZĖSṠƈ;cḶ=ß³ṾAiʠʠɼZÞ⁹’to podstawowa liczba 250, która to daje. DY łączy cyfry tego numeru z znakami nowej linii.

dylnan
źródło
3

Java 8, 48 bajtów + 625,173330827107 Kara = 673,173330827107

v->{for(int i=108;i-->0;System.out.println(6));}

Wypróbuj online.

Pierwsza wersja, która drukuje 108 razy 6. Spróbuję ulepszyć stąd.

Kevin Cruijssen
źródło
3

J , 390 bajtów + 183,319 Kara = 573,319

d=.'5@-103659=-/-02247,...../////1-/1135,-...////0/0-/0124+--------.--....-.///00012.//012,--.-...--......,..///'
f=.'[ZG@=:U]JX-`~/PD~kB+XrjlKzx_hG~ynkq~1e5_k)+DMAY~nB\ M,y5YUOTZ`c.v}"*29JrVvsK~~6K*I<I?j'';F>y3:"~~3<DRZaz!ppf\'
p=.'tj1;p#Iq<M{^Z1c l~''@/q^aH9*~`J}~v8F~gQiGy8~%ye^F`Gt~-~G1ev>R4E$~F{/mKJ[S~HCrfxXkscWHku;t"c IWZF.n1l',9$' '
echo,.(_40+a.i.d)+(100%~_32+a.i.f)+1e4%~_32+a.i.p

Wypróbuj online!

Zaokrągliłem liczby do czterech cyfr dziesiętnych i podzieliłem je na jedną listę dla liczb całkowitych, jedną listę dla pierwszych 2 cyfr ułamkowych i jedną dla drugich 2 cyfr ułamkowych. Każdą cyfrę zakodowałem za pomocą znaku do wydrukowania. Aby zdekodować, po prostu wydobywam elementy łączące i ułamkowe pewnej liczby z powiązanych list znaków i składam je z powrotem do pływaka.

J , 602 bajtów + 0 Kara = 602

q=.'qy7?JOZp@''T1}Ciz={3L/0rHp/r}`M{m^ZHZSy55MYPBaNcV+\?A%/{eyQxQPkDs8W''@m$\6wZsV%KjI''_9"o\XMCP+vU=S3''c3\IKD@ovEW''4LX2O=>n&dgNktY><Ru_TvNpArL?}Y642=}5Hb"yYsD19$<OP2<|Jo)!8S`^9N3w{Q]968P2VF`[(2HOa%XL*V|,[8PcL)}w8"*l%JNC{amnCNx\yH73(pmJGCDq?8@D$ww{X`t0[o.`$''RB&eXiP|_u#9WBFS%U:3|O.U+is5E$A[c{1MpJ@Dw&^rpM_N:M^:o&!HPX9?0i}{j?%2W20z>Q?AOw!fuTWC"Q{-Er'
f=:3 :0
a=.0$0 while.*#y do.l=.1+{.y
a=.a,<' '-.~":}.l{.y
y=.l}.y
end.a
)
echo;(('.',~":"0)&.>_40+a.i.'5@-103659=-/-02247,...../////1-/1135,-...////0/0-/0124+--------.--....-.///00012.//012,--.-...--......,..///'),.(f 12,10#.inv 94x#._32+a.i.q),.<CR

Wypróbuj online!

Tym razem wybrałem nieco inne podejście. Dzielę liczby na 2 strumienie - pierwszy zawiera części całkowite, które są po prostu zakodowane za pomocą pojedynczego znaku do wydrukowania. Drugi strumień zawiera całe części ułamkowe. Usunąłem wszystkie odstępy między cyframi i dodałem każdy podciąg o długości 1-9 (poprawiłem pierwszą frakcję, która ma 13 cyfr). Następnie zakodowałem tę listę jako podstawową liczbę 94, przedstawiłem ją jako listę znaków.

Można zapisać około 20 bajtów, jeśli czasownik zostanie przepisany jako cichy.

Galen Iwanow
źródło
2

Bubblegum , 403 + 9,12 = 412.12

00000000: 1551 5116 c030 04fb 7718 af20 e2fe 17db  .QQ..0..w.. ....
00000010: f2d1 454d 4322 cae7 d8d5 ef4d 142c db87  ..EMC".....M.,..
00000020: 5bdc 2bd8 785d 6cf4 22ec bc32 7167 f43c  [.+.x]l."..2qg.<
00000030: be38 8bf0 c4cb 8345 fb54 4759 9423 f8a6  .8.....E.TGY.#..
00000040: 2dd6 3b93 6919 3ee8 691b 8fba b758 5b47  -.;.i.>.i....X[G
00000050: 236b 6cfc 380b 1a3d 26c0 b278 de04 0845  #kl.8..=&..x...E
00000060: 85f7 c222 fdb0 288b f19d 4344 5a7b f503  ..."..(...CDZ{..
00000070: 6ada e011 1533 69f0 41f4 fdc8 64e8 be8d  j....3i.A...d...
00000080: e02a 0026 6c5d 3a83 7f70 2f1b ab88 8ca7  .*.&l]:..p/.....
00000090: 5fa8 e36a b64d 1425 f73a ee0c aab9 eb1a  _..j.M.%.:......
000000a0: 3b5f 1282 c9ba 9401 8c62 58b4 b5c7 6e24  ;_.......bX...n$
000000b0: 6d1c d7c4 aa7f c626 7e44 d569 8a21 c7d6  m......&~D.i.!..
000000c0: df65 d78f 1157 b495 4ea5 7b28 77ab 4035  .e...W..N.{(w.@5
000000d0: 9d45 561b fdae 9869 e34b d44c ea45 6b31  .EV....i.K.L.Ek1
000000e0: 46c7 63f1 ecfc bd03 645a 4f24 645a a4f6  F.c.....dZO$dZ..
000000f0: 1a56 ceab 7b33 ade1 3202 681b d19f a088  .V..{3..2.h.....
00000100: 1f7a 4b97 1c7d 9952 d1b5 21dc 571c d9dc  .zK..}.R..!.W...
00000110: 2702 a204 a254 f665 08e2 ed0a d451 c2a7  '....T.e.....Q..
00000120: 6344 df39 5c65 98f3 7092 d537 2bc3 897e  cD.9\e..p..7+..~
00000130: 25ac 9a34 7a17 b324 17fb 5238 64d9 79e6  %..4z..$..R8d.y.
00000140: cc94 a475 edbc 3675 6372 45d2 01ec c9ae  ...u..6ucrE.....
00000150: e44c 403c d1da 5eec 841e 6d73 acfd 6d6e  .L@<..^...ms..mn
00000160: 3f8d 94cb 4e39 507c 995a 4f3d ac94 9da8  ?...N9P|.ZO=....
00000170: afa5 cb13 2378 3994 da2d 0a2e 5a35 b754  ....#x9..-..Z5.T
00000180: 0943 9a0b 2b92 d151 1a6a 77a6 9c96 abb3  .C..+..Q.jw.....
00000190: ffc1 07                                  ...

Wypróbuj online!

ovs
źródło