Wprowadzenie
Twoim zadaniem jest wygenerowanie pierwszych 1000 wyrażeń w ciągłym ułamkowym ujęciu cyfrowej sumy pierwiastka kwadratowego z 2 i pierwiastka kwadratowego z 3.
Innymi słowy, utwórz dokładnie następującą listę (ale format wyjściowy jest elastyczny)
[2, 6, 1, 5, 7, 2, 4, 4, 1, 11, 68, 17, 1, 19, 5, 6, 1, 5, 3, 2, 1, 2, 3, 21, 1, 2, 1, 2, 2, 9, 8, 1, 1, 1, 1, 6, 2, 1, 4, 1, 1, 2, 3, 7, 1, 4, 1, 7, 1, 1, 4, 22, 1, 1, 3, 1, 2, 1, 1, 1, 7, 2, 7, 2, 1, 3, 14, 1, 4, 1, 1, 1, 15, 1, 91, 3, 1, 1, 1, 8, 6, 1, 1, 1, 1, 3, 1, 2, 58, 1, 8, 1, 5, 2, 5, 2, 1, 1, 7, 2, 3, 3, 22, 5, 3, 3, 1, 9, 1, 2, 2, 1, 7, 5, 2, 3, 10, 2, 3, 3, 4, 94, 211, 3, 2, 173, 2, 1, 2, 1, 14, 4, 1, 11, 6, 1, 4, 1, 1, 62330, 1, 17, 1, 5, 2, 5, 5, 1, 9, 3, 1, 2, 1, 5, 1, 1, 1, 11, 8, 5, 12, 3, 2, 1, 8, 6, 1, 3, 1, 3, 1, 2, 1, 78, 1, 3, 2, 442, 1, 7, 3, 1, 2, 3, 1, 3, 2, 9, 1, 6, 1, 2, 2, 2, 5, 2, 1, 1, 1, 6, 2, 3, 3, 2, 2, 5, 2, 2, 1, 2, 1, 1, 9, 4, 4, 1, 3, 1, 1, 1, 1, 5, 1, 1, 4, 12, 1, 1, 1, 4, 2, 15, 1, 2, 1, 3, 2, 2, 3, 2, 1, 1, 13, 11, 1, 23, 1, 1, 1, 13, 4, 1, 11, 1, 1, 2, 3, 14, 1, 774, 1, 3, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 8, 1, 3, 10, 2, 7, 2, 2, 1, 1, 1, 2, 2, 1, 11, 1, 2, 5, 1, 4, 1, 4, 1, 16, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 8, 1, 2, 1, 1, 22, 3, 1, 8, 1, 1, 1, 1, 1, 9, 1, 1, 4, 1, 2, 1, 2, 3, 5, 1, 3, 1, 77, 1, 7, 1, 1, 1, 1, 2, 1, 1, 27, 16, 2, 1, 10, 1, 1, 5, 1, 6, 2, 1, 4, 14, 33, 1, 2, 1, 1, 1, 2, 1, 1, 1, 29, 2, 5, 3, 7, 1, 471, 1, 50, 5, 3, 1, 1, 3, 1, 3, 36, 15, 1, 29, 2, 1, 2, 9, 5, 1, 2, 1, 1, 1, 1, 2, 15, 1, 22, 1, 1, 2, 7, 1, 5, 9, 3, 1, 3, 2, 2, 1, 8, 3, 1, 2, 4, 1, 2, 6, 1, 6, 1, 1, 1, 1, 1, 5, 7, 64, 2, 1, 1, 1, 1, 120, 1, 4, 2, 7, 3, 5, 1, 1, 7, 1, 3, 2, 3, 13, 2, 2, 2, 1, 43, 2, 3, 3, 1, 2, 4, 14, 2, 2, 1, 22, 4, 2, 12, 1, 9, 2, 6, 10, 4, 9, 1, 2, 6, 1, 1, 1, 14, 1, 22, 1, 2, 1, 1, 1, 1, 118, 1, 16, 1, 1, 14, 2, 24, 1, 1, 2, 11, 1, 6, 2, 1, 2, 1, 1, 3, 6, 1, 2, 2, 7, 1, 12, 71, 3, 2, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 3, 5, 5, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 2, 19, 1, 16, 2, 15, 1, 1, 3, 2, 3, 2, 4, 1, 3, 1, 1, 7, 1, 2, 2, 117, 2, 2, 8, 2, 1, 5, 1, 3, 12, 1, 10, 1, 4, 1, 1, 2, 1, 5, 2, 33, 1, 1, 1, 1, 1, 18, 1, 1, 1, 4, 236, 1, 11, 4, 1, 1, 11, 13, 1, 1, 5, 1, 3, 2, 2, 3, 3, 7, 1, 2, 8, 5, 14, 1, 1, 2, 6, 7, 1, 1, 6, 14, 22, 8, 38, 4, 6, 1, 1, 1, 1, 7, 1, 1, 20, 2, 28, 4, 1, 1, 4, 2, 2, 1, 1, 2, 3, 1, 13, 1, 2, 5, 1, 4, 1, 3, 1, 1, 2, 408, 1, 29, 1, 6, 67, 1, 6, 251, 1, 2, 1, 1, 1, 8, 13, 1, 1, 1, 15, 1, 16, 23, 12, 1, 3, 5, 20, 16, 4, 2, 1, 8, 1, 2, 2, 6, 1, 2, 4, 1, 9, 1, 7, 1, 1, 1, 64, 10, 1, 1, 2, 1, 8, 2, 1, 5, 4, 2, 5, 6, 7, 1, 2, 1, 2, 2, 1, 4, 11, 1, 1, 4, 1, 714, 6, 3, 10, 2, 1, 6, 36, 1, 1, 1, 1, 10, 2, 1, 1, 1, 3, 2, 1, 6, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 40, 1, 1, 1, 5, 1, 3, 24, 2, 1, 6, 2, 1, 1, 1, 7, 5, 2, 1, 2, 1, 6, 1, 1, 9, 1, 2, 7, 6, 2, 1, 1, 1, 2, 1, 12, 1, 20, 7, 3, 1, 10, 1, 8, 1, 3, 1, 1, 1, 1, 2, 1, 1, 6, 1, 2, 1, 5, 1, 1, 1, 5, 12, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 8, 2, 4, 1, 3, 1, 1, 1, 2, 1, 11, 3, 2, 1, 7, 18, 1, 1, 17, 1, 1, 7, 4, 6, 2, 5, 6, 4, 4, 2, 1, 6, 20, 1, 45, 5, 6, 1, 1, 3, 2, 3, 3, 19, 1, 1, 1, 1, 1, 1, 34, 1, 1, 3, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 312, 2, 1, 1, 1, 3, 6, 6, 1, 2, 25, 14, 281, 4, 1, 37, 582, 3, 20, 2, 1, 1, 1, 2, 1, 3, 7, 8, 4, 1, 11, 2, 3, 183, 2, 23, 8, 72, 2, 2, 3, 8, 7, 1, 4, 1, 4, 1, 2, 2, 1, 2, 1, 8, 2, 4, 1, 2, 1, 2, 1, 1, 2, 1, 1, 10, 2, 1, 1, 5, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 2, 9]
Wyzwanie
Poniższe ogólne wprowadzenie do ciągłej frakcji pochodzi z wyzwania Uproszczenie ciągłej frakcji .
Ułamki ciągłe są wyrażeniami, które iteracyjnie opisują ułamki. Mogą być reprezentowane graficznie:
Lub mogą być reprezentowane jako lista wartości:
[a0, a1, a2, a3, ... an]
To jest wyzwanie, aby dowiedzieć się dalszą część cyfrową mądry suma sqrt(2)
i sqrt(3)
suma cyfr mądry jest zdefiniowana w następujący sposób:
Weź cyfry w postaci dziesiętnej sqrt(2)
i sqrt(3)
i uzyskaj sumę cyfra po cyfrze:
1. 4 1 4 2 1 3 5 6 2 3 ...
+ 1. 7 3 2 0 5 0 8 0 7 5 ...
= 2. 11 4 6 2 6 3 13 6 9 8 ...
Następnie zachowaj tylko ostatnią cyfrę sumy i skompiluj je z powrotem do dziesiętnej reprezentacji liczby rzeczywistej
1. 4 1 4 2 1 3 5 6 2 3 ...
+ 1. 7 3 2 0 5 0 8 0 7 5 ...
= 2. 11 4 6 2 6 3 13 6 9 8 ...
-> 2. 1 4 6 2 6 3 3 6 9 8 ...
Cyfrowa suma sqrt(2)
i sqrt(3)
wynosi zatem 2.1462633698...
, a gdy jest wyrażana ułamkiem ciągłym, pierwsze 1000 uzyskanych (tj. Do ) wartości jest tymi wymienionymi w części wstępnej.a0
a999
Okular
Możesz napisać funkcję lub pełny program. Żaden nie powinien pobierać danych wejściowych. Innymi słowy, funkcja lub program powinien działać poprawnie bez żadnych danych wejściowych. Nie ma znaczenia, co robi funkcja lub program, jeśli podano niepuste dane wejściowe.
Powinieneś wyprowadzać dane do STDOUT. Tylko jeśli twój język nie obsługuje wyjścia do STDOUT, powinieneś użyć najbliższego odpowiednika w swoim języku.
Nie musisz utrzymywać STDERR w czystości, a zatrzymanie programu przez błąd jest dozwolone, o ile wymagane dane wyjściowe są wykonywane w STDOUT lub jego odpowiednikach.
Możesz dostarczyć dane wyjściowe za pomocą dowolnego standardowego formularza .
To jest golf golfowy , najniższa liczba bajtów wygrywa.
Jak zwykle obowiązują tutaj domyślne luki .
źródło
×⁺Ñ
nie działa Alternatywnie×Ѳ$
.Haskell 207 bajtów
Nie mogłem znaleźć łatwego sposobu na obliczenie ciągłego ułamka lazilly, więc pracowałem również z 2000 cyframi.
źródło