Narysuj czajniczek z Utah

20

Utah czajniczek , pierwotnie stworzony przez Martina Newell, to wygodny obiekt do testowania programów graficznych 3D.

Zadanie polega na utworzeniu obrazu czajnika w formie szkieletowej w rzucie perspektywicznym. Aby zachęcić do idei aplikacji kodu źródłowego , przeglądanie i sterowanie kamerą mogą być izolowane i wykluczane z liczenia. Dzieje się tak, aby parametry i plik wejściowy mogły zostać zmodyfikowane, a kod ponownie wykorzystany do wygenerowania różnorodnych obrazów, ale nie jest konieczne tworzenie pełnoprawnego narzędzia, które akceptuje skomplikowane argumenty wiersza polecenia lub podobne. Poszukiwana jest równowaga „hackerska”.

czajnik czajnik

ref. StackOverflow: Jak działają łatki Beziera w czajniku Utah?

Są tutaj trzy podzadania:

  • odczytu w danych czajniczek w jego oryginalnym formacie .
  • podziel dane łatki za pomocą podziału deCasteljau lub innej metody. Inne metody wykorzystują macierze bazowe Beziera i oceniają wielomiany (standardowe referencje, takie jak Foley i van Dam, Newmann i Sproull) lub metody bazowe Bernsteina (które wciąż są poza mną).
  • rzutuj punkty na 2D (jeśli język nie obsługuje natywnie 3D) i narysuj kontur każdej małej łaty widzianej z punktu oka, którego widok jest wyśrodkowany na punkcie LookAt i którego oś pionowa jest wyrównana z pionową osią czajnika (tj. narysuj „pionowo” z ładnego punktu widzenia).

Zakładając, że odczyt danych tekstowych zorientowanych liniowo z pliku nie stanowi większego problemu, to wyzwanie polega na praktycznym zapoznaniu się z danymi łatki Bi-Cubic Beziera.

Ponieważ zwykły zwykły test wyrównywania powierzchni tylnej nie jest wystarczający (wszystkie łaty nie są skierowane na zewnątrz), nie jest konieczne usuwanie linii ukrytych ani powierzchni. Jako model szkieletowy powinien wyglądać dobrze z widocznym tyłem. Wygląd można poprawić, dostosowując szerokość linii w zależności od odległości od oka, ale nie jest to absolutnie konieczne (moje własne programy tego nie robią).

Jest to zarówno i . Odpowiedzi rywalizujące w golfie powinny zawierać normalną liczbę. Ale zachęty do składania w nietypowych językach są bardzo zachęcane, nawet jeśli nie są szczególnie krótkie.

Dla entuzjastów złożoności Kołmogorowa istnieje bardziej zwięzły zestaw danych, w którym pełny zestaw można odtworzyć poprzez dodanie rotacji i odbicie lustrzane łat. A w Jima Blinna A Trip Down the Graphics Pipeline istnieje jeszcze bardziej zwięzła metoda generowania, wykorzystując fakt, że poszczególne łatki mają symetrię obrotową lub inną. Całe ciało (lub pokrywkę) można opisać pojedynczą krzywą Beziera, która jest obracana wokół osi y. Dziobek i uchwyty można opisać za pomocą dwóch krzywych ich profilu, a następnie wybierając pośrednie punkty kontrolne w celu przybliżenia wyciągnięcia kołowego.

luser droog
źródło
Czy powinienem uwzględnić liczbę punktów w mojej liczbie?
TheDoctor
Wolałbym, żeby pochodziła z pliku ... ale nie, nie trzeba liczyć danych łatki, jakkolwiek się pojawi.
luser droog
Sugeruję, aby nie zezwalać na wbudowane funkcje, takie jak glutSolidTeapotiglutWireTeapot !
Anders Kaseorg,
@AndersKaseorg Wydaje mi się, że opisałem to wymagając wczytania oryginalnych danych. ... To powiedziawszy, byłem zbyt swobodny w egzekwowaniu tej zasady. Dokładniejsza odpowiedź z łatwością przyjąłaby znacznik wyboru, nawet jeśli jest dłuższy.
luser droog
@luserdroog Wyobraź sobie rozwiązanie, które odczytuje oryginalne dane, ignoruje je i wywołuje glutWireTeapot.
Anders Kaseorg,

Odpowiedzi:

9

Przetwarzanie (Java), 314 (237 bez sterowania kamerą)

Bez definicji tablic:

void setup(){size(640,480,P3D);}void draw(){background(0);noFill();stroke(255);translate(width/2,height/2,70);scale(30);rotateX(map(mouseX,0,width,0,TWO_PI));rotateY(map(mouseY,0,height,0,TWO_PI));for(int[] p:patches){beginShape();for(int pt:p){vertex(data[pt-1][0],data[pt-1][1],data[pt-1][2]);}endShape(CLOSE);}}

Definicje tablic danych:

float [][] data = {{1.4,0.0,2.4},
{1.4,-0.784,2.4},
{0.784,-1.4,2.4},
{0.0,-1.4,2.4},
{1.3375,0.0,2.53125},
{1.3375,-0.749,2.53125},
{0.749,-1.3375,2.53125},
{0.0,-1.3375,2.53125},
{1.4375,0.0,2.53125},
{1.4375,-0.805,2.53125},
{0.805,-1.4375,2.53125},
{0.0,-1.4375,2.53125},
{1.5,0.0,2.4},
{1.5,-0.84,2.4},
{0.84,-1.5,2.4},
{0.0,-1.5,2.4},
{-0.784,-1.4,2.4},
{-1.4,-0.784,2.4},
{-1.4,0.0,2.4},
{-0.749,-1.3375,2.53125},
{-1.3375,-0.749,2.53125},
{-1.3375,0.0,2.53125},
{-0.805,-1.4375,2.53125},
{-1.4375,-0.805,2.53125},
{-1.4375,0.0,2.53125},
{-0.84,-1.5,2.4},
{-1.5,-0.84,2.4},
{-1.5,0.0,2.4},
{-1.4,0.784,2.4},
{-0.784,1.4,2.4},
{0.0,1.4,2.4},
{-1.3375,0.749,2.53125},
{-0.749,1.3375,2.53125},
{0.0,1.3375,2.53125},
{-1.4375,0.805,2.53125},
{-0.805,1.4375,2.53125},
{0.0,1.4375,2.53125},
{-1.5,0.84,2.4},
{-0.84,1.5,2.4},
{0.0,1.5,2.4},
{0.784,1.4,2.4},
{1.4,0.784,2.4},
{0.749,1.3375,2.53125},
{1.3375,0.749,2.53125},
{0.805,1.4375,2.53125},
{1.4375,0.805,2.53125},
{0.84,1.5,2.4},
{1.5,0.84,2.4},
{1.75,0.0,1.875},
{1.75,-0.98,1.875},
{0.98,-1.75,1.875},
{0.0,-1.75,1.875},
{2.0,0.0,1.35},
{2.0,-1.12,1.35},
{1.12,-2.0,1.35},
{0.0,-2.0,1.35},
{2.0,0.0,0.9},
{2.0,-1.12,0.9},
{1.12,-2.0,0.9},
{0.0,-2.0,0.9},
{-0.98,-1.75,1.875},
{-1.75,-0.98,1.875},
{-1.75,0.0,1.875},
{-1.12,-2.0,1.35},
{-2.0,-1.12,1.35},
{-2.0,0.0,1.35},
{-1.12,-2.0,0.9},
{-2.0,-1.12,0.9},
{-2.0,0.0,0.9},
{-1.75,0.98,1.875},
{-0.98,1.75,1.875},
{0.0,1.75,1.875},
{-2.0,1.12,1.35},
{-1.12,2.0,1.35},
{0.0,2.0,1.35},
{-2.0,1.12,0.9},
{-1.12,2.0,0.9},
{0.0,2.0,0.9},
{0.98,1.75,1.875},
{1.75,0.98,1.875},
{1.12,2.0,1.35},
{2.0,1.12,1.35},
{1.12,2.0,0.9},
{2.0,1.12,0.9},
{2.0,0.0,0.45},
{2.0,-1.12,0.45},
{1.12,-2.0,0.45},
{0.0,-2.0,0.45},
{1.5,0.0,0.225},
{1.5,-0.84,0.225},
{0.84,-1.5,0.225},
{0.0,-1.5,0.225},
{1.5,0.0,0.15},
{1.5,-0.84,0.15},
{0.84,-1.5,0.15},
{0.0,-1.5,0.15},
{-1.12,-2.0,0.45},
{-2.0,-1.12,0.45},
{-2.0,0.0,0.45},
{-0.84,-1.5,0.225},
{-1.5,-0.84,0.225},
{-1.5,0.0,0.225},
{-0.84,-1.5,0.15},
{-1.5,-0.84,0.15},
{-1.5,0.0,0.15},
{-2.0,1.12,0.45},
{-1.12,2.0,0.45},
{0.0,2.0,0.45},
{-1.5,0.84,0.225},
{-0.84,1.5,0.225},
{0.0,1.5,0.225},
{-1.5,0.84,0.15},
{-0.84,1.5,0.15},
{0.0,1.5,0.15},
{1.12,2.0,0.45},
{2.0,1.12,0.45},
{0.84,1.5,0.225},
{1.5,0.84,0.225},
{0.84,1.5,0.15},
{1.5,0.84,0.15},
{-1.6,0.0,2.025},
{-1.6,-0.3,2.025},
{-1.5,-0.3,2.25},
{-1.5,0.0,2.25},
{-2.3,0.0,2.025},
{-2.3,-0.3,2.025},
{-2.5,-0.3,2.25},
{-2.5,0.0,2.25},
{-2.7,0.0,2.025},
{-2.7,-0.3,2.025},
{-3.0,-0.3,2.25},
{-3.0,0.0,2.25},
{-2.7,0.0,1.8},
{-2.7,-0.3,1.8},
{-3.0,-0.3,1.8},
{-3.0,0.0,1.8},
{-1.5,0.3,2.25},
{-1.6,0.3,2.025},
{-2.5,0.3,2.25},
{-2.3,0.3,2.025},
{-3.0,0.3,2.25},
{-2.7,0.3,2.025},
{-3.0,0.3,1.8},
{-2.7,0.3,1.8},
{-2.7,0.0,1.575},
{-2.7,-0.3,1.575},
{-3.0,-0.3,1.35},
{-3.0,0.0,1.35},
{-2.5,0.0,1.125},
{-2.5,-0.3,1.125},
{-2.65,-0.3,0.9375},
{-2.65,0.0,0.9375},
{-2.0,-0.3,0.9},
{-1.9,-0.3,0.6},
{-1.9,0.0,0.6},
{-3.0,0.3,1.35},
{-2.7,0.3,1.575},
{-2.65,0.3,0.9375},
{-2.5,0.3,1.125},
{-1.9,0.3,0.6},
{-2.0,0.3,0.9},
{1.7,0.0,1.425},
{1.7,-0.66,1.425},
{1.7,-0.66,0.6},
{1.7,0.0,0.6},
{2.6,0.0,1.425},
{2.6,-0.66,1.425},
{3.1,-0.66,0.825},
{3.1,0.0,0.825},
{2.3,0.0,2.1},
{2.3,-0.25,2.1},
{2.4,-0.25,2.025},
{2.4,0.0,2.025},
{2.7,0.0,2.4},
{2.7,-0.25,2.4},
{3.3,-0.25,2.4},
{3.3,0.0,2.4},
{1.7,0.66,0.6},
{1.7,0.66,1.425},
{3.1,0.66,0.825},
{2.6,0.66,1.425},
{2.4,0.25,2.025},
{2.3,0.25,2.1},
{3.3,0.25,2.4},
{2.7,0.25,2.4},
{2.8,0.0,2.475},
{2.8,-0.25,2.475},
{3.525,-0.25,2.49375},
{3.525,0.0,2.49375},
{2.9,0.0,2.475},
{2.9,-0.15,2.475},
{3.45,-0.15,2.5125},
{3.45,0.0,2.5125},
{2.8,0.0,2.4},
{2.8,-0.15,2.4},
{3.2,-0.15,2.4},
{3.2,0.0,2.4},
{3.525,0.25,2.49375},
{2.8,0.25,2.475},
{3.45,0.15,2.5125},
{2.9,0.15,2.475},
{3.2,0.15,2.4},
{2.8,0.15,2.4},
{0.0,0.0,3.15},
{0.0,-0.002,3.15},
{0.002,0.0,3.15},
{0.8,0.0,3.15},
{0.8,-0.45,3.15},
{0.45,-0.8,3.15},
{0.0,-0.8,3.15},
{0.0,0.0,2.85},
{0.2,0.0,2.7},
{0.2,-0.112,2.7},
{0.112,-0.2,2.7},
{0.0,-0.2,2.7},
{-0.002,0.0,3.15},
{-0.45,-0.8,3.15},
{-0.8,-0.45,3.15},
{-0.8,0.0,3.15},
{-0.112,-0.2,2.7},
{-0.2,-0.112,2.7},
{-0.2,0.0,2.7},
{0.0,0.002,3.15},
{-0.8,0.45,3.15},
{-0.45,0.8,3.15},
{0.0,0.8,3.15},
{-0.2,0.112,2.7},
{-0.112,0.2,2.7},
{0.0,0.2,2.7},
{0.45,0.8,3.15},
{0.8,0.45,3.15},
{0.112,0.2,2.7},
{0.2,0.112,2.7},
{0.4,0.0,2.55},
{0.4,-0.224,2.55},
{0.224,-0.4,2.55},
{0.0,-0.4,2.55},
{1.3,0.0,2.55},
{1.3,-0.728,2.55},
{0.728,-1.3,2.55},
{0.0,-1.3,2.55},
{1.3,0.0,2.4},
{1.3,-0.728,2.4},
{0.728,-1.3,2.4},
{0.0,-1.3,2.4},
{-0.224,-0.4,2.55},
{-0.4,-0.224,2.55},
{-0.4,0.0,2.55},
{-0.728,-1.3,2.55},
{-1.3,-0.728,2.55},
{-1.3,0.0,2.55},
{-0.728,-1.3,2.4},
{-1.3,-0.728,2.4},
{-1.3,0.0,2.4},
{-0.4,0.224,2.55},
{-0.224,0.4,2.55},
{0.0,0.4,2.55},
{-1.3,0.728,2.55},
{-0.728,1.3,2.55},
{0.0,1.3,2.55},
{-1.3,0.728,2.4},
{-0.728,1.3,2.4},
{0.0,1.3,2.4},
{0.224,0.4,2.55},
{0.4,0.224,2.55},
{0.728,1.3,2.55},
{1.3,0.728,2.55},
{0.728,1.3,2.4},
{1.3,0.728,2.4},
{0.0,0.0,0.0},
{1.5,0.0,0.15},
{1.5,0.84,0.15},
{0.84,1.5,0.15},
{0.0,1.5,0.15},
{1.5,0.0,0.075},
{1.5,0.84,0.075},
{0.84,1.5,0.075},
{0.0,1.5,0.075},
{1.425,0.0,0.0},
{1.425,0.798,0.0},
{0.798,1.425,0.0},
{0.0,1.425,0.0},
{-0.84,1.5,0.15},
{-1.5,0.84,0.15},
{-1.5,0.0,0.15},
{-0.84,1.5,0.075},
{-1.5,0.84,0.075},
{-1.5,0.0,0.075},
{-0.798,1.425,0.0},
{-1.425,0.798,0.0},
{-1.425,0.0,0.0},
{-1.5,-0.84,0.15},
{-0.84,-1.5,0.15},
{0.0,-1.5,0.15},
{-1.5,-0.84,0.075},
{-0.84,-1.5,0.075},
{0.0,-1.5,0.075},
{-1.425,-0.798,0.0},
{-0.798,-1.425,0.0},
{0.0,-1.425,0.0},
{0.84,-1.5,0.15},
{1.5,-0.84,0.15},
{0.84,-1.5,0.075},
{1.5,-0.84,0.075},
{0.798,-1.425,0.0},
{1.425,-0.798,0.0}
};

int [][] patches = {
    {32},
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},
{4,17,18,19,8,20,21,22,12,23,24,25,16,26,27,28},
{19,29,30,31,22,32,33,34,25,35,36,37,28,38,39,40},
{31,41,42,1,34,43,44,5,37,45,46,9,40,47,48,13},
{13,14,15,16,49,50,51,52,53,54,55,56,57,58,59,60},
{16,26,27,28,52,61,62,63,56,64,65,66,60,67,68,69},
{28,38,39,40,63,70,71,72,66,73,74,75,69,76,77,78},
{40,47,48,13,72,79,80,49,75,81,82,53,78,83,84,57},
{57,58,59,60,85,86,87,88,89,90,91,92,93,94,95,96},
{60,67,68,69,88,97,98,99,92,100,101,102,96,103,104,105},
{69,76,77,78,99,106,107,108,102,109,110,111,105,112,113,114},
{78,83,84,57,108,115,116,85,111,117,118,89,114,119,120,93},
{121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136},
{124,137,138,121,128,139,140,125,132,141,142,129,136,143,144,133},
{133,134,135,136,145,146,147,148,149,150,151,152,69,153,154,155},
{136,143,144,133,148,156,157,145,152,158,159,149,155,160,161,69},
{162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177},
{165,178,179,162,169,180,181,166,173,182,183,170,177,184,185,174},
{174,175,176,177,186,187,188,189,190,191,192,193,194,195,196,197},
{177,184,185,174,189,198,199,186,193,200,201,190,197,202,203,194},
{204,204,204,204,207,208,209,210,211,211,211,211,212,213,214,215},
{204,204,204,204,210,217,218,219,211,211,211,211,215,220,221,222},
{204,204,204,204,219,224,225,226,211,211,211,211,222,227,228,229},
{204,204,204,204,226,230,231,207,211,211,211,211,229,232,233,212},
{212,213,214,215,234,235,236,237,238,239,240,241,242,243,244,245},
{215,220,221,222,237,246,247,248,241,249,250,251,245,252,253,254},
{222,227,228,229,248,255,256,257,251,258,259,260,254,261,262,263},
{229,232,233,212,257,264,265,234,260,266,267,238,263,268,269,242},
{270,270,270,270,279,280,281,282,275,276,277,278,271,272,273,274},
{270,270,270,270,282,289,290,291,278,286,287,288,274,283,284,285},
{270,270,270,270,291,298,299,300,288,295,296,297,285,292,293,294},
{270,270,270,270,300,305,306,279,297,303,304,275,294,301,302,271},
{306}
};

Bardziej czytelna wersja:

void setup() {
  size(640,480,P3D);
}

void draw() {
  background(0);
  noFill();
  stroke(255);
  translate(width/2,height/2,70);
  scale(30);
  rotateX(map(mouseX,0,width,0,TWO_PI));
  rotateY(map(mouseY,0,height,0,TWO_PI));
  for (int[] p:patches) {
    beginShape();
    for (int pt:p) {
      vertex(data[pt-1][0],data[pt-1][2],data[pt-1][2]);
    }
    endShape(CLOSE); 
  }
}

I kilka zdjęć:

ukończony produkt

Kolejna wersja z interesującymi efektami:

void setup(){size(640,480,P3D);}
void draw(){
  background(0);noFill();stroke(255);
  translate(width/2,height/2,70);scale(30);
  rotateX(map(mouseX,0,width,0,TWO_PI));rotateY(map(mouseY,0,height,0,TWO_PI));
  for(int[] p:patches){
    //beginShape(QUADS);
    for(int pt:p){
      for(int pu:p){
        //vertex(data[pu-1][0],data[pu-1][4],data[pu-1][2]);
        line(data[pt-1][0],data[pt-1][5],data[pt-1][2],data[pu-1][0],data[pu-1][6],data[pu-1][2]);
    }}
    //endShape(CLOSE);
  }
}

wersja 2

Doktor
źródło
Myślę, że powinien rozdzielić plastry przynajmniej raz, aby dziobek nabrał kształtu.
luser droog
Tak, drugie zdjęcie jest lepsze. Wygląda na to, że tak naprawdę nie dokonujesz podziału. Krawędzie każdej łaty są krzywymi Beziera ... Mimo to +1 Wygląda jak czajnik!
luser droog
stroke(-1)jest o jeden bajt krótszy niżstroke(255)
Kritixi Lithos
11

Postscriptum

Nie w pełni golfowy, ale ilustruje to inne podejście niż w deCasteljau: ocena bazowego wielomianu. Używa mat.ps .

(mat.ps)run[    % load matrix library, begin dictionary construction

/N 17
/C [ 0 7 4 ]   % Cam
/E [ 0 0 40 ] % Eye
/R 0 roty 120 rotx 90 rotz   % Rot: pan tilt twist
          matmul   matmul

/f(teapot)(r)file
/t{token pop exch pop}      % parse a number or other ps token
/s{(,){search not{t exit}if t 3 1 roll}loop}  % parse a comma-separated list
/r{token pop{[f 99 string readline pop s]}repeat}>>begin   % parse a count-prefixed paragraph of csv numbers
[/P[f r]/V[f r]/v{1 sub V exch get}        % Patches and Vertices and vert lookup shortcut
/B[[-1 3 -3 1][3 -6 3 0][-3 3 0 0][1 0 0 0]]              % Bezier basis matrix
/A{dup dup mul exch 2 copy mul 3 1 roll 1 4 array astore} % x->[x^3 x^2 x 1]
/M{[1 index 0 4 getinterval 2 index 4 4 getinterval       % flattened matrix->rowXcolumn matrix
3 index 8 4 getinterval 4 index 12 4 getinterval]exch pop}
/J{ C{sub}vop R matmul 0 get                              % perspective proJection  [x y z]->[X Y]
    aload pop E aload pop
    4 3 roll div exch neg
    4 3 roll add 1 index mul 4 1 roll
    3 1 roll sub mul}
>>begin

300 400 translate
1 14 dup dup scale div currentlinewidth mul setlinewidth  % global scale
/newline { /line {moveto /line {lineto} store} store } def
newline
P{
    8 dict begin
        [exch{v J 2 array astore}forall]/p exch def   % load patch vertices and project to 2D
        /X[p{0 get}forall] M B exch matmul B matmul def  % multiply control points by Bezier basis
        /Y[p{1 get}forall] M B exch matmul B matmul def

        0 1 N div 1 1 index .2 mul add{A/U exch def   % interpolate the polynomial over (u,v)/(N)
            /UX U X matmul def
            /UY U Y matmul def
            0 1 N div 1 1 index .2 mul add{A/V exch 1 array astore transpose def
                /UXV UX V matmul def
                /UYV UY V matmul def
                UXV 0 get 0 get
                UYV 0 get 0 get line
            }for
            newline
        }for

        0 1 N div 1 1 index .2 mul add{A/V exch def   % interpolate the polynomial over (u,v)/(N)
            /V [V] transpose def
            /XV X V matmul def
            /YV Y V matmul def
            0 1 N div 1 1 index .2 mul add{A/U exch 1 array astore transpose def
                /UXV U XV matmul def
                /UYV U YV matmul def
                UXV 0 get 0 get
                UYV 0 get 0 get line
            }for
            newline
        }for

    end

    %exit
}forall
stroke

Czajnik na bazie Beziera

1112

Usunięcie linii pionowych i zdyskontowanie parametrów daje tę wersję 1112 znaków. Używa mat.ps .

(mat.ps)run[    % 12

/N 17
/C [ 0 7 4 ]   % Cam 
/E [ 0 0 40 ] % Eye 
/R 0 roty 120 rotx 90 rotz   % Rot: pan tilt twist
          matmul   matmul

/f(teapot)(r)file/t{token pop exch pop}/s{(,){search not{t exit}if t   % 1100
3 1 roll}loop}/r{token pop{[f 99 string readline pop 
s]}repeat}>>begin[/P[f r]/V[f r]/v{1 sub 
V exch get}/B[[-1 3 -3 1][3 -6 3 0][-3 3 0 0][1 0 0 0]]/A{dup dup mul exch
2 copy mul 3 1 roll 1 4 array astore}/M{[1 index 0 4 getinterval 2 index 4 4 getinterval    
3 index 8 4 getinterval 4 index 12 4 getinterval]exch pop}/J{C{sub}vop R matmul 0 get    
aload pop E aload pop 4 3 roll div exch neg 4 3 roll add 1 index mul 4 1 roll
3 1 roll sub mul}>>begin 300 400 translate
1 14 dup dup scale div currentlinewidth mul setlinewidth  
/newline{/line{moveto/line{lineto}store}store}def newline
P{8 dict begin[exch{v J 2 array astore}forall]/p
exch def/X[p{0 get}forall] M B exch matmul B matmul
def/Y[p{1 get}forall] M B exch matmul B matmul def 
0 1 N div 1 1 index .2 mul add{A/U exch def/UX U X matmul def/UY U Y matmul def 
0 1 N div 1 1 index .2 mul add{A/V exch 1 array astore transpose
def/UXV UX V matmul def/UYV UY V matmul def UXV 0 get 0 get UYV 0 get 0 get line}for
newline}for end}forall stroke

Pętle oparte na Bezierze

luser droog
źródło