Łączenie fajerwerków

13

Przegląd

Biorąc pod uwagę listę fajerwerków a-zi godziny 3-78, ułóż je za pomocą bezpieczników, aby wszystkie zapalały się we właściwym czasie.

Wiersz wprowadzania jest podawany jako litery i cyfry oddzielone spacjami:

a 3 b 6 c 6 d 8 e 9 f 9

Że przykład pokazuje, że fajerwerk azapotrzebowanie na światło w czasie 3, ba czarówno na 6, dna 8, z e, a fzarówno na 9. Każda linia odpowiada jednej mapie.

Wyjście jest mapą bezpieczników / fajerwerków dla każdej linii, używając symboli |-do pokazania bezpieczników i liter do pokazania fajerwerków.

A -łączy bezpiecznik bezpieczników i fajerwerków bezpośrednio w lewo / prawo od niego, natomiast |Łéczy bezpieczników z tymi powyżej / poniżej. Na przykład bezpieczniki nie|| są podłączone i .-|

Na przykład dwie możliwe odpowiedzi na powyższe to:

---a        ---------f
  |         |||   ||
  |-c       |||   de
--|--d      a||
| b |        |c
f   e        b

Wszystkie mapy bezpieczników powinny zaczynać się od jednego -w lewym górnym rogu. To jest punkt, w którym zapalasz bezpiecznik. Każda postać bezpiecznika potrzebuje jednej sekundy na spalenie. Jak widać, aosiąga się go w ciągu trzech sekund na obu schematach, bw sześciu itd.

Teraz obie powyższe mapy są prawidłowe dla podanych danych wejściowych, ale jedna jest wyraźnie bardziej wydajna. Lewy zużywa tylko 13 jednostek bezpiecznika, a prawy 20.

Bezpieczniki nie przepalają fajerwerków! W przypadku danych wejściowych a 3 b 5jest to nieprawidłowe:

---a--b

Wyzwanie

Twoim celem jest zminimalizowanie ilości bezpiecznika używanego we wszystkich przypadkach testowych. Punktacja jest bardzo prosta, całkowita liczba użytych bezpieczników.

Jeśli nie możesz stworzyć mapy dla przypadku testowego, bez względu na to, czy jest to przypadek niemożliwy, czy nie, wynik dla tego przypadku jest sumą wszystkich czasów (41 w powyższym przykładzie).

W przypadku remisu punktacja jest modyfikowana, aby wygrać najbardziej kompaktowe mapy. Wynik rozstrzygnięcia jest obszarem obwiedni każdej mapy. Oznacza to, że długość najdłuższej linii razy liczba linii. W przypadku map „niemożliwych” jest to kwadrat największej liczby (81 w powyższym przykładzie).

W przypadku, gdy zgłoszenia wiążą obie te metody punktacji, remis przechodzi do wcześniejszego wpisu / edycji.

Twój program musi być deterministyczny dla celów weryfikacji.

Przypadki testowe

Istnieje 250 przypadków testowych, zlokalizowanych tutaj . Każdy z nich ma od 4 do 26 fajerwerków. Minimalny czas bezpiecznika dla fajerwerku to 3. Fajerwerki w każdym przypadku są „sortowane” według czasu i litery, co oznacza, bże nigdy wcześniej się nie zapali a.

Podczas publikowania prosimy o podanie pełnego programu, całkowitej liczby punktów oraz wynikowej mapy (przynajmniej) pierwszego przypadku testowego podanego w pliku:

a 6 b 8 c 11 d 11 e 11 f 11 g 12 h 15 i 18 j 18 k 21 l 23 m 26 n 28 o 28 p 30 q 32 r 33 s 33 t 34 
Geobity
źródło
Czy dowolnie wiele fajerwerków może wybuchnąć w tym samym czasie?
Ingo Bürk
Zasadniczo tak. Nie szukałem największego tego przypadku w moich testowych przypadkach, ale wiem, że to co najmniej cztery. Czas między dwoma bezpiecznikami wynosi rand.nextInt(5)%4więc 40% szansy 0i 20% na każdy 1,2,3.
Geobits,
Tylko sugestia: użyłbym znaku „+” w przypadku, gdy bezpieczniki łączą się lub zmieniają kierunek, dzięki czemu grafika wyjściowa IMHO będzie o wiele bardziej intuicyjna!
flawr
@flawr Pozwolę na to, pod warunkiem, że zostanie to zrobione w sposób, który nie zmienia wyniku. Na przykład, -+-zamiast ---nie podłączać automatycznie fajerwerków powyżej / poniżej, nadal musi znajdować się |nad / poniżej, aby połączyć fajerwerki. -+-w miejsce -|-jest w porządku, jak jest.
Geobits
Czy wszystkie przypadki testowe można rozwiązać? Na przykład, jeśli w czasie 3 było pięć lub więcej fajerwerków do odpalenia, nie sądzę, żebyś mógł je wszystkie dopasować wystarczająco blisko do początku. Podobnie, możesz być w stanie dopasować je wszystkie, ale mogą one blokować drogę na zewnątrz w celu późniejszych fajerwerków.
Martin Ender,

Odpowiedzi:

3

C ++

Całkowita długość: 9059, całkowita powierzchnia: 27469, awarie: 13.

Uwaga: Wynik obejmuje kary za niepowodzenie.


Przykładowe dane wyjściowe:

a 6 b 8 c 11 d 11 e 11 f 11 g 12 h 15 i 18 j 18 k 21 l 23 m 26 n 28 o 28 p 30 q 32 r 33 s 33 t 34 
------ae  
     | |  
     |---c
     b||-g
      |d| 
      f | 
    i---| 
  k---| h 
   |  j   
   |---m  
   l  | t 
     o-n| 
      |s-r
      |-| 
      p q 
Length: 39, Area: 150.

a 6 b 6 c 6 d 6 e 6 f 6 g 6 h 8 i 9 j 9 k 9 l 12 m 12 n 13 o 14 p 15 q 15 r 15 s 17 t 17 u 17 v 17 w 17 x 20 y 23 z 26 
------a  n|--w 
|d-||---k|-o|  
| g|b  |--m --x
|-|c    ||--r| 
||f     l|-q | 
||--j u--|--s|-
e|-i    |p|  y|
 h      v t  z-
Length: 56, Area: 120.

Pełna wydajność: http://pastebin.com/raw.php?i=spBUidBV


Czy nie lubisz tylko brutalnych rozwiązań? To trochę więcej niż prosty algorytm cofania: nasz niestrudzony pracownik porusza się po mapie, w razie potrzeby umieszczając bezpieczniki i fajerwerki, jednocześnie testując wszystkie możliwe ruchy w dowolnym momencie. Cóż, prawie --- ograniczamy zestaw ruchów i wcześnie porzucamy nieoptymalne stany, aby nie trwało to nieznośnie długo (a w szczególności, aby zakończyło się). Szczególną uwagę należy zwrócić na to, aby nie tworzyć żadnych cykli lub niezamierzonych ścieżki i nie wracać tą samą drogą, którą przyszliśmy, więc gwarantujemy, że nie odwiedzimy dwukrotnie tego samego stanu. Mimo to znalezienie optymalnego rozwiązania może zająć trochę czasu, więc ostatecznie rezygnujemy z optymalizacji rozwiązania, jeśli zajmie to zbyt dużo czasu.

Ten algorytm ma jeszcze trochę miejsca. Po pierwsze, można znaleźć lepsze rozwiązania poprzez zwiększenie FRUSTRATIONparametrów. Nie ma konkurencyjnych bankomatów, ale te liczby można zwiększyć, jeśli i kiedy ...

Skompilować z: g++ fireworks.cpp -ofireworks -std=c++11 -pthread -O3.

Uruchom z: ./fireworks.

Odczytuje dane wejściowe ze STDIN i zapisuje dane wyjściowe do STDOUT (być może poza kolejnością).

/* Magic numbers */
#define THREAD_COUNT 2
/* When FRUSTRATION_MOVES moves have passed since the last solution was found,
 * the last (1-FRUSTRATION_STATES_BACKOFF)*100% of the backtracking states are
 * discarded and FRUSTRATION_MOVES is multiplied by FRUSTRATION_MOVES_BACKOFF.
 * The lower these values are, the faster the algorithm is going to give up on
 * searching for better solutions. */
#define FRUSTRATION_MOVES 1000000
#define FRUSTRATION_MOVES_BACKOFF 0.8
#define FRUSTRATION_STATES_BACKOFF 0.5

#include <iostream>
#include <vector>
#include <algorithm>
#include <utility>
#include <thread>
#include <mutex>
#include <string>
#include <sstream>
#include <cassert>

using namespace std;

/* A tile on the board. Either a fuse, a firework, an empty tile or an
 * out-of-boudns tile. */
struct tile {
    /* The tile's value, encoded the "obvious" way (i.e. '-', '|', 'a', etc.)
     * Empty tiles are encoded as '\0' and OOB tiles as '*'. */
    char value;
    /* For fuse tiles, the time at which the fuse is lit. */
    int time;

    operator char&() { return value; }
    operator const char&() const { return value; }

    bool is_fuse() const { return value == '-' || value == '|'; }
    /* A tile is vacant if it's empty or OOB. */
    bool is_vacant() const { return !value || value == '*'; }

    /* Prints the tile. */
    template <typename C, typename T>
    friend basic_ostream<C, T>& operator<<(basic_ostream<C, T>& os,
                                            const tile& t) {
        return os << (t.value ? t.value : ' ');
    }
};
/* Fireworks have the same encoding as tiles. */
typedef tile firework;
typedef vector<firework> fireworks;

/* The fuse map. It has physical dimensions (its bounding-box) but is
 * conceptually infinite (filled with empty tiles.) */
class board {
    /* The tiles, ordered left-to-right top-to-bottom. */
    vector<tile> p_data;
    /* The board dimensions. */
    int p_width, p_height;
    /* The total fuse length. */
    int p_length;

public:
    board(): p_width(0), p_height(0), p_length(0) {}

    /* Physical dimensions. */
    int width() const { return p_width; }
    int height() const { return p_height; }
    int area() const { return width() * height(); }
    /* Total fuse length. */
    int length() const { return p_length; }

    /* Returns the tile at (x, y). If x or y are negative, returns an OOB
     * tile. */
    tile get(int x, int y) const {
        if (x < 0 || y < 0)
            return {'*'};
        else if (x >= width() || y >= height())
            return {'\0'};
        else
            return p_data[y * width() + x];
    }
    /* Sets the tile at (x, y). x and y must be nonnegative and the tile at
     * (x, y) must be empty. */
    board& set(int x, int y, const tile& t) & {
        assert(x >= 0 && y >= 0);
        assert(!get(x, y));
        if (x >= width() || y >= height()) {
            int new_width = x >= width() ? x + 1 : width();
            int new_height = y >= height() ? y + 1 : height();
            vector<tile> temp(new_width * new_height, {'\0'});
            for (int l = 0; l < height(); ++l)
                copy(
                    p_data.begin() + l * width(),
                    p_data.begin() + (l + 1) * width(),
                    temp.begin() + l * new_width
                );
            p_data.swap(temp);
            p_width = new_width;
            p_height = new_height;
        }
        p_data[y * width() + x] = t;
        if (t.is_fuse())
            ++p_length;
        return *this;
    }
    board&& set(int x, int y, const tile& t) && { return move(set(x, y, t)); }

    /* Prints the board. */
    template <typename C, typename T>
    friend basic_ostream<C, T>& operator<<(basic_ostream<C, T>& os,
                                            const board& b) {
        for (int y = 0; y < b.height(); ++y) {
            for (int x = 0; x < b.width(); ++x)
                os << b.get(x, y);
            os << endl;
        }
        return os;
    }
};

/* A state of the tiling algorithm. */
struct state {
    /* The current board. */
    board b;
    /* The next firework to tile. */
    fireworks::const_iterator fw;
    /* The current location. */
    int x, y;
    /* The current movement direction. 'N'orth 'S'outh 'E'ast, 'W'est or
     * 'A'ny. */
    char dir;
};

/* Adds a state to the state-stack if its total fuse length and bounding-box
 * area are not worse than the current best ones. */
void add_state(vector<state>& states, int max_length, int max_area,
                state&& new_s) {
    if (new_s.b.length() < max_length ||
        (new_s.b.length() == max_length && new_s.b.area() <= max_area)
    )
        states.push_back(move(new_s));
}
/* Adds the state after moving in a given direction, if it's a valid move. */
void add_movement(vector<state>& states, int max_length, int max_area,
                    const state& s, char dir) {
    int x = s.x, y = s.y;
    char parallel_fuse;
    switch (dir) {
    case 'E': if (s.dir == 'W') return; ++x; parallel_fuse = '|'; break;
    case 'W': if (s.dir == 'E') return; --x; parallel_fuse = '|'; break;
    case 'S': if (s.dir == 'N') return; ++y; parallel_fuse = '-'; break;
    case 'N': if (s.dir == 'S') return; --y; parallel_fuse = '-'; break;
    }
    const tile t = s.b.get(s.x, s.y), nt = s.b.get(x, y);
    assert(t.is_fuse());
    if (nt.is_fuse() && !(t == parallel_fuse && nt == parallel_fuse))
        add_state(states, max_length, max_area, {s.b, s.fw, x, y, dir});
}
/* Adds the state after moving in a given direction and tiling a fuse, if it's a
 * valid move. */
void add_fuse(vector<state>& states, int max_length, int max_area,
                const state& s, char dir, char fuse) {
    int x = s.x, y = s.y;
    int sgn;
    bool horz;
    switch (dir) {
    case 'E': ++x; sgn = 1; horz = true; break;
    case 'W': --x; sgn = -1; horz = true; break;
    case 'S': ++y; sgn = 1; horz = false; break;
    case 'N': --y; sgn = -1; horz = false; break;
    }
    if (s.b.get(x, y))
        /* Tile is not empty. */
        return;
    /* Make sure we don't create cycles or reconnect a firework. */
    const tile t = s.b.get(s.x, s.y);
    assert(t.is_fuse());
    if (t == '-') {
        if (horz) {
            if (fuse == '-') {
                if (!s.b.get(x + sgn, y).is_vacant() ||
                    s.b.get(x, y - 1) == '|' ||
                    s.b.get(x, y + 1) == '|')
                    return;
            } else {
                if (s.b.get(x + sgn, y) == '-' ||
                    !s.b.get(x, y - 1).is_vacant() ||
                    !s.b.get(x, y + 1).is_vacant())
                    return;
            }
        } else {
            if (!s.b.get(x, y + sgn).is_vacant() ||
                s.b.get(x - 1, y) == '-' ||
                s.b.get(x + 1, y) == '-')
                return;
        }
    } else {
        if (!horz) {
            if (fuse == '|') {
                if (!s.b.get(x, y + sgn).is_vacant() ||
                    s.b.get(x - 1, y) == '-' ||
                    s.b.get(x + 1, y) == '-')
                    return;
            } else {
                if (s.b.get(x, y + sgn) == '|' ||
                    !s.b.get(x - 1, y).is_vacant() ||
                    !s.b.get(x + 1, y).is_vacant())
                    return;
            }
        } else {
            if (!s.b.get(x + sgn, y).is_vacant() ||
                s.b.get(x, y - 1) == '|' ||
                s.b.get(x, y + 1) == '|')
                return;
        }
    }
    /* Ok. */
    add_state(
        states,
        max_length,
        max_area,
        {board(s.b).set(x, y, {fuse, t.time + 1}), s.fw, x, y, dir}
    );
}
/* Adds the state after adding a firework at the given direction, if it's a
 * valid move. */
void add_firework(vector<state>& states, int max_length, int max_area,
                    const state& s, char dir) {
    int x = s.x, y = s.y;
    int sgn;
    bool horz;
    switch (dir) {
    case 'E': ++x; sgn = 1; horz = true; break;
    case 'W': --x; sgn = -1; horz = true; break;
    case 'S': ++y; sgn = 1; horz = false; break;
    case 'N': --y; sgn = -1; horz = false; break;
    }
    if (s.b.get(x, y))
        /* Tile is not empty. */
        return;
    /* Make sure we don't run into an undeliberate fuse. */
    if (horz) {
        if (s.b.get(x + sgn, y) == '-' || s.b.get(x, y - 1) == '|' ||
            s.b.get(x, y + 1) == '|')
            return;
    } else {
        if (s.b.get(x, y + sgn) == '|' || s.b.get(x - 1, y) == '-' ||
            s.b.get(x + 1, y) == '-')
            return;
    }
    /* Ok. */
    add_state(
        states,
        max_length,
        max_area,
        /* After adding a firework, we can move in any direction. */
        {board(s.b).set(x, y, {*s.fw}), s.fw + 1, s.x, s.y, 'A'}
    );
}
void add_possible_moves(vector<state>& states, int max_length, int max_area,
                        const state& s) {
    /* We add the new states in reverse-desirability order. The most
     * (aesthetically) desirable states are added last. */

    const tile t = s.b.get(s.x, s.y);
    assert(t.is_fuse());

    /* Move in all (possible) directions. */
    for (char dir : "WENS")
        if (dir) add_movement(states, max_length, max_area, s, dir);

    /* If the fuse is too short for the next firework, keep adding fuse. */
    if (t.time < s.fw->time) {
        if (t == '-') {
            add_fuse(states, max_length, max_area, s, 'N', '|');
            add_fuse(states, max_length, max_area, s, 'S', '|');
            add_fuse(states, max_length, max_area, s, 'W', '|');
            add_fuse(states, max_length, max_area, s, 'W', '-');
            add_fuse(states, max_length, max_area, s, 'E', '|');
            add_fuse(states, max_length, max_area, s, 'E', '-');
        } else {
            add_fuse(states, max_length, max_area, s, 'W', '-');
            add_fuse(states, max_length, max_area, s, 'E', '-');
            add_fuse(states, max_length, max_area, s, 'N', '-');
            add_fuse(states, max_length, max_area, s, 'N', '|');
            add_fuse(states, max_length, max_area, s, 'S', '-');
            add_fuse(states, max_length, max_area, s, 'S', '|');
        }
    } else if (t.time == s.fw->time) {
        /* If we have enough fuse for the next firework, place the firework (if
         * possible) and don't add more fuse, or else we'll never finish... */
        if (t == '-') {
            add_firework(states, max_length, max_area, s, 'W');
            add_firework(states, max_length, max_area, s, 'E');
        } else {
            add_firework(states, max_length, max_area, s, 'N');
            add_firework(states, max_length, max_area, s, 'S');
        }
    }
}

void thread_proc(mutex& lock, int& total_length, int& total_area,
                    int& failures) {
    fireworks fw;
    vector<state> states;

    while (true) {
        /* Read input. */
        string input;
        {
            lock_guard<mutex> lg(lock);

            while (!cin.eof() && input.empty())
                getline(cin, input);
            if (input.empty())
                break;
        }
        fw.clear();
        int length = 0, area;
        {
            stringstream is;
            is << input;
            while (!is.eof()) {
                char c;
                int t;
                if (is >> c >> t) {
                    /* Fireworks must be sorted by launch time. */
                    assert(fw.empty() || t >= fw.back().time);
                    fw.push_back({c, t});
                    length += t;
                }
            }
            assert(!fw.empty());
            area = fw.back().time * fw.back().time;
        }

        /* Add initial state. */
        states.push_back({board().set(0, 0, {'-', 1}), fw.begin(), 0, 0, 'A'});

        board solution;
        int moves = 0;
        int frustration_moves = FRUSTRATION_MOVES;

        while (!states.empty()) {
            /* Check for solutions (all fireworks consumed.) */
            while (!states.empty() && states.back().fw == fw.end()) {
                state& s = states.back();
                /* Did we find a better solution? */
                if (solution.area() == 0 || s.b.length() < length ||
                    (s.b.length() == length && s.b.area() < area)
                ) {
                    solution = move(s.b);
                    moves = 0;
                    length = solution.length();
                    area = solution.area();
                }
                states.pop_back();
            }

            /* Expand the top state. */
            if (!states.empty()) {
                state s = move(states.back());
                states.pop_back();
                add_possible_moves(states, length, area, s);
            }

            /* Getting frustrated? */
            ++moves;
            if (moves > frustration_moves) {
                /* Get rid of some data. */
                states.erase(
                    states.begin() + states.size() * FRUSTRATION_STATES_BACKOFF,
                    states.end()
                );
                frustration_moves *= FRUSTRATION_MOVES_BACKOFF;
                moves = 0;
            }
        }

        /* Print solution. */
        {
            lock_guard<mutex> lg(lock);

            cout << input << endl;

            if (solution.area())
                cout << solution;
            else {
                cout << "FAILED!" << endl;
                ++failures;
            }

            cout << "Length: " << length <<
                    ", Area: " << area <<
                    "." << endl << endl;
            total_length += length;
            total_area += area;
        }
    }
}

int main(int argc, const char* argv[]) {
    thread threads[THREAD_COUNT];
    mutex lock;
    int total_length = 0, total_area = 0, failures = 0;

    for (int i = 0; i < THREAD_COUNT; ++i)
        threads[i] = thread(thread_proc, ref(lock), ref(total_length),
                            ref(total_area), ref(failures));
    for (int i = 0; i < THREAD_COUNT; ++i)
        threads[i].join();

    cout << "Total Length: " << total_length <<
            ", Total Area: " << total_area <<
            ", Failures: " << failures <<
            "." << endl;
}

Pyton

Całkowita długość: 17387, całkowita powierzchnia: 62285, awarie: 44.


Przykładowe dane wyjściowe:

a 6 b 8 c 11 d 11 e 11 f 11 g 12 h 15 i 18 j 18 k 21 l 23 m 26 n 28 o 28 p 30 q 32 r 33 s 33 t 34
------a                
     |----f            
     |---c             
     b|||---h          
      |dg  |           
      e    |-j         
           |---k       
           i  |        
              |---m    
              l  |-o   
                 |--p  
                 n |--s
                   |-r 
                   q|  
                    t  
Length: 45, Area: 345.

Pełna wydajność: http://pastebin.com/raw.php?i=mgiqXCRK


Dla porównania, oto znacznie prostsze podejście. Próbuje połączyć fajerwerki z jedną główną linią bezpiecznika, tworząc kształt „klatki schodowej”. Jeśli fajerwerk nie może połączyć się bezpośrednio z linią główną (co dzieje się, gdy dwa lub więcej fajerwerków zapala się jednocześnie), śledzi linię główną w poszukiwaniu punktu, w którym może rozgałęzić się prostopadle w dół lub w prawo (i zawiedzie, jeśli nie ma takiego punktu).

Nic dziwnego, że działa gorzej niż solver z brutalną siłą, ale nie z ogromną przewagą. Szczerze mówiąc, spodziewałem się, że różnica będzie nieco większa.

Uruchom z: python fireworks.py.

from __future__ import print_function
import sys

total_length = total_area = failures = 0

for line in sys.stdin:
    # Read input.
    line = line.strip()
    if line == "": continue
    fws = line.split(' ')
    # The fireworks are a list of pairs of the form (<letter>, <time>).
    fws = [(fws[i], int(fws[i + 1])) for i in xrange(0, len(fws), 2)]

    # The board is a dictionary of the form <coord>: <tile>.
    # The first tile marks the "starting point" and is out-of-bounds.
    board = {(-1, 0): '*'}
    # The tip of the main "staircase" fuse.
    tip_x, tip_y = -1, 0
    tip_time = 0
    # We didn't fail. Yet...
    failed = False

    for (fw, fw_time) in fws:
        dt = fw_time - tip_time
        # Can we add the firework to the main fuse line?
        if dt > 0:
            # We can. Alternate the direction to create a "staircase" pattern.
            if board[(tip_x, tip_y)] == '-':    dx, dy = 0, 1; fuse = '|'
            else:                               dx, dy = 1, 0; fuse = '-'
            x, y = tip_x, tip_y
            tip_x += dt * dx
            tip_y += dt * dy
            tip_time += dt
        else:
            # We can't. Trace the main fuse back until we find a point where we
            # can thread, or fail if we reach the starting point.
            x, y = tip_x, tip_y
            while board[(x, y)] != '*':
                horz = board[(x, y)] == '-'
                if horz:    dx, dy = 0, 1; fuse = '|'
                else:       dx, dy = 1, 0; fuse = '-'
                if dt > 0 and (x + dx, y + dy) not in board: break
                if horz:    x -= 1
                else:       y -= 1
                dt += 1
            if board[(x, y)] == '*':
                failed = True
                break
        # Add the fuse and firework.
        for i in xrange(dt):
            x += dx; y += dy
            board[(x, y)] = fuse
        board[(x + dx, y + dy)] = fw

    # Print output.
    print(line)
    if not failed:
        max_x, max_y = (max(board, key=lambda p: p[i])[i] + 1 for i in (0, 1))
        for y in xrange(max_y):
            for x in xrange(max_x):
                print(board.get((x, y), ' '), end = "")
            print()
        length = len(board) - len(fws) - 1
        area = max_x * max_y
    else:
        print("FAILED!")
        failures += 1
        length = sum(map(lambda fw: fw[1], fws))
        area = fws[-1][1] ** 2
    print("Length: %d, Area: %d.\n" % (length, area))
    total_length += length; total_area += area

print("Total Length: %d, Total Area: %d, Failures: %d." %
        (total_length, total_area, failures))
DarwinBot
źródło
Z ciekawości, ile czasu zajmuje uzupełnienie aktualnych parametrów?
Geobits,
@Geobits: Oczywiście jest to zależne od maszyny i nie obserwowałem zbyt uważnie, ale myślę o dwudziestu minutach, daj lub weź.
DarwinBot,