Narysuj Sri Yantrę

11

Wyzwanie:

Narysuj Sri Yantrę .

Jak:

Można to narysować na różne sposoby. Wszystkie zawierają wiele kroków. Jeśli uważasz, że możesz go narysować bez wykonywania powiązanych kroków, przewiń poniżej elementy, które musisz mieć na rysunku .

Pełne kroki można znaleźć tutaj:

http://www.saralhindi.com/Shri_Yantra/makingsky14steps_eng.htm

( Nie skopiowałem ich tutaj, ponieważ byłoby to bardzo długie pytanie , oto lustro archieve.org na wypadek, gdyby pierwszy link kiedykolwiek spadł )

Ostateczne zdjęcie powinno wyglądać jak na zdjęciu poniżej:

wprowadź opis zdjęcia tutaj

Muszę mieć:

Zasadniczo każda wybrana metoda rysowania byłaby prawidłową odpowiedzią, pod warunkiem zachowania najważniejszych elementów

  1. Liczba trójkątów powinna być taka sama jak na powyższym obrazku (43 mniejsze trójkąty wynikały z przeplotu większych 9 trójkątów)

  2. Te potrójne skrzyżowania są przestrzegane:

wprowadź opis zdjęcia tutaj

  1. Czubki trójkątów skierowanych w górę dotykają podstaw 4 trójkątów skierowanych w dół, a końce trójkątów skierowanych w dół powinny dotykać podstaw 3 trójkątów skierowanych w górę, jak pokazano na poniższej ilustracji.

    wprowadź opis zdjęcia tutaj

  2. Wewnętrzne koło (bindu) jest koncentryczne z zewnętrznym okręgiem.

  3. Końce (wierzchołki) większych trójkątów powinny dotykać zewnętrznego koła: wprowadź opis zdjęcia tutaj

  4. Ostateczny obraz powinien zawierać wszystkie elementy i ogólnie powinien wyglądać następująco: wprowadź opis zdjęcia tutaj

  5. Kolor powinien być mniej więcej taki sam jak powyższy obraz dla każdego elementu (w tym płatków).

  6. Kształt płatków powinien najlepiej wyglądać mniej więcej tak, jak na poniższym obrazku, ale może być również tylko półkolem lub prostym łukowym okręgiem:

  7. Nie ma ścisłych ograniczeń proporcji do okręgów ani wielkości bram, ale najbardziej zewnętrzny okrąg powinien mieć średnicę nie mniejszą niż 90% boku zewnętrznego kwadratu, pozostałe elementy byłyby odpowiednio ustawione względem tych proporcji.

wprowadź opis zdjęcia tutaj

wprowadź opis zdjęcia tutaj

Języki programowania i wyniki

Nie ma ograniczeń co do języka programowania ani formatu wyniku (może to być obraz wektorowy, obraz bitmapowy, płótno itp.), Pod warunkiem, że wynik jest względnie jasny i widoczny (co najmniej 800px X 800px)

Późniejsza edycja: Nie ma doskonałej metody rysowania, ponieważ ten blog tak dobrze je odkrywa: http://fotthewuk.livejournal.com/ Biorąc to pod uwagę, niewielkie błędy będą tolerowane.

W tym momencie jest to interesujące ćwiczenie, aby dowiedzieć się, że jest bardzo prawdopodobne, że nie ma idealnego rozwiązania, podobnie jak kwadrat kwadratu.

Eduard Florinescu
źródło
3
Myślę, że musisz zdefiniować paletę kolorów, odpowiednie skale długości zewnętrznych kół oraz tło i kształt płatków.
Martin Ender
@ MartinBüttner Zredagowałem pytanie, proszę powiedz mi, czy informacje są teraz lepsze.
Narysowanie tej Yantry
Cześć, wiem, że specyfikacja jest bardzo trudna w tym przypadku. Ale jest to wymagane. Moje ostatnie podobne pytanie również było trudne z powodu specyfikacji, więc lepiej jest wymyślić jedno, ponieważ bez tego jest to zbyt trudne do narysowania i praktycznie nie jest prawdziwym wyzwaniem.
Optymalizator
5
To wyzwanie jest szalone.
AL
1
Dzięki, już to rozgryzłem;) Cholera .. to jest trudne, zrobiłem tylko trójkąty, a mój kod jest już ogromny. Optymalizacja teraz xD
Teun Pronk

Odpowiedzi:

8

Mathematica - 2836 2536 znaków

Rozgryzienie kombinacji regionów, w których małe trójkąty są dostępne do kolorowania, było trochę zawrotne.

The Frame

Obiekty ramki to nierówności, które opisują jako regiony. Np. Czerwony i żółty przegrzebek to dwa regiony kół.

n1=8;n2=16;
w8=Round[.78 Table[{Cos[2\[Pi] k/n1],Sin[2\[Pi] k/n1]},{k,0,n1-1}],.01];
w16=Round[1 Table[{Cos[2\[Pi] k/n2],Sin[2\[Pi] k/n2]},{k,0,n2-1}],.01];
n=12;y1=.267;
x2=1/Sqrt[2];w=1.8;v=1.85;
pts={{-w,w},{-w/4,w},{-w/4,w+w/8},{-5w/8,w+w/8},{-5w/8,w+5w/24},{5w/8,w+5w/24},{5w/8,w+w/8},{w/4,w+w/8},{w/4,w},
{w,w},{w,w/4},{w+w/8,w/4},{w+w/8,5w/8},{w+5w/24,5w/8},{w+5w/24,-5w/8},{w+w/8,-5w/8},{w+w/8,-w/4},{w,-w/4},
{w,-w},
{w/4,-w},{w/4,-w-w/8},{(5 w)/8,-w-w/8},{(5 w)/8,-w-(5 w)/24},{-((5 w)/8),-w-(5 w)/24},{-((5 w)/8),-w-w/8},{-(w/4),-w-w/8},{-(w/4),-w},{-w,-w},

{-w,-w/4},{-w-w/8,-w/4},{-w-w/8,-5w/8},{-w-5w/24,-5w/8},{-w-5w/24,5w/8},{-w-w/8,5w/8},{-w-w/8,w/4},{-w,w/4}
};

frame=RegionPlot[{
(*MeshRegion[pts2,Polygon[Range[20]]],*) (*orange trim *)
MeshRegion[pts,Polygon[Range[Length[pts]]]], (*green box *)
ImplicitRegion[x^2+y^2<2.8,{x,y}], (*white, largest circle *)
ImplicitRegion[Or@@(((x-#)^2+(y-#2)^2<.1)&@@@w16),{x,y}], (*yellow scallops*)
ImplicitRegion[x^2+y^2<1,{x,y}],(*white circle *)
ImplicitRegion[x^2+y^2<1.4,{x,y}],(*white disk*)
ImplicitRegion[Or@@(((x-#)^2+(y-#2)^2<.15)&@@@w8),{x,y}],(*red scallops*)
ImplicitRegion[x^2+y^2<1,{x,y}] , (*white disk *)
ImplicitRegion[1.8 < x^2+y^2< 2.2,{x,y}] ,(*brown outer rim*)
ImplicitRegion[2.4 < x^2+y^2< 2.8,{x,y}](*yellow outer rim*)},
BoundaryStyle->Directive[Thickness[.005],Black],
AspectRatio->1,
Frame-> False,
PlotStyle->{(*Lighter@Orange,*)
Darker@Green,White,Yellow,White,White,
Red,White,Lighter@Brown,Yellow,Red,
White,White,White,White,White,
White,White,Red,Red,Darker@Blue,
Darker@Blue,Darker@Blue,Darker@Blue,Darker@Blue,Darker@Blue,
Red,Red,Darker@Blue,Red,Yellow,Red}];

Następnie jest dysk do ukrycia niektórych kręgów, które zostały użyte do wykonania przegrzebka.

Graphics[{White,Disk[{0,0},.99]}]

The Innards

Niektóre definicje wierzchołków i trójkątów. Każdy trójkąt, t1, t2, ... jest odrębnym regionem. Operacje logiczne ( RegionUnion. RegionIntersectionI RegionDifference) na dużych trójkątach służą do definiowania mniejszych trójkątnych komórek jako regionów pochodnych, które można indywidualnie pokolorować.

p1={-Cos[ArcTan[.267]],y1};
p2={Cos[ArcTan[.267]],y1};
p3={-Cos[ArcTan[.267]],-y1};
p4={Cos[ArcTan[.267]],-y1};
p5={-x2,(x2+y1)/2};
p6={x2,(x2+y1)/2};
p7={-x2,-(x2+y1)/2};
p8={x2,-(x2+y1)/2};
p9={0.5,-x2};
p10={-0.5,-x2};
p11={0.5,-x2};
p12={-0.5,-x2};
p13={a=-.34,b=-.12};
p14={-a,b};
p15={0.5,x2};
p16={-0.5,x2};  
t1=MeshRegion[{{0,-1},p1,p2},Triangle[{1,2,3}]];
t2=MeshRegion[{{0,1},p3,p4},Triangle[{1,3,2}]];
t3=MeshRegion[{{0,-x2},p5,p6},Triangle[{1,3,2}]];
t4=MeshRegion[{{0,x2},p7,p8},Triangle[{1,3,2}]];
t5=MeshRegion[{{0,+y1},p9,p10},Triangle[{1,3,2}]];
t6=MeshRegion[{{0,p5[[2]]},p13,p14},Triangle[{1,3,2}]];
t7=MeshRegion[{{0,p13[[2]]},p15,p16},Triangle[{1,3,2}]];
t8=MeshRegion[{{0,p7[[2]]},{-.33,p1[[2]]-.12},{.33,p1[[2]]-.12}},Triangle[{1,3,2}]];
t9=MeshRegion[{{0,p3[[2]]},{z=-.23,0.063},{-z,.063}},Triangle[{1,3,2}]];

disk=Graphics[{White,Disk[{0,0},.99]}];


innards=RegionPlot[{
t1,t2,t3,t4,t5,t6,t7,t8,t9,(*White*)
RegionDifference[t1,RegionUnion[t5,t4,t2]],(*Blue*)
RegionDifference[t4,RegionUnion[t1,t3,t5]],(*red*)
RegionDifference[t3,RegionUnion[t7,t4,t2]], (*blue*)
RegionDifference[t2,RegionUnion[t1,t7,t3]], (*blue*)
RegionDifference[t5,t1],   (*blue*)
RegionDifference[t4,RegionUnion[t1,t7]], (*Blue *)
RegionDifference[t7,t2],(*Blue*)
RegionDifference[t3,RegionUnion[t1,t2]],(*Blue *)
RegionDifference[t8,t2],  (* blue *)
RegionDifference[t9,t5],  (* red *)
RegionDifference[t9,t6],  (* red *)
RegionIntersection[t4,RegionDifference[t6,t1]], (*blue*)
RegionIntersection[t6,RegionDifference[t5,t8]],  (* red *)
RegionIntersection[t7,t9], (*yellow*)
RegionDifference[RegionIntersection[t7,t8],t5], (*red *)
RegionDifference[RegionIntersection[t5,t6],RegionUnion[t7,t9]],(*red *)
ImplicitRegion[x^2+y^2<= .001,{x,y}],  (* smallest circle *) (* red *)
RegionDifference[RegionIntersection[t7,t1 ],t6], (*Red*)
RegionDifference[t8,RegionUnion[t5,t6]],
RegionDifference[t6,RegionUnion[t7,t8]],
RegionDifference[RegionIntersection[t2,t5],RegionUnion[t7,t8]],
RegionDifference[RegionIntersection[t7,t3],t4],
RegionDifference[RegionIntersection[t1,t3],RegionUnion[t5,t4]],
RegionDifference[RegionIntersection[t2,t4],RegionUnion[t7,t3]],
RegionDifference[RegionIntersection[t5,t4],t3]},
BoundaryStyle->Directive[Thickness[.005],Black],
AspectRatio->1,
PlotStyle->{
White,White,White,White,White,White,White,White,White,
Blue,Red,Red,Blue,Blue,Blue,Blue,Blue,Blue,
Red,Red,Blue,Red,Yellow,Red,Red,Red,Blue,Blue,Blue,Blue,Red,Red,Red,Red}]

Złożenie części razem

Show[frame,disk,innards,Graphics[{Brown,Thickness[.02],Line[Append[pts,{-w,w}]]}];
Graphics[{RGBColor[0.92,0.8,0.],Thickness[.015],Line[Append[pts,{-w,w}]]}]]

sri4


Grał w golfa

r=ImplicitRegion;m=MeshRegion;t=Triangle;d=RegionDifference;u=RegionUnion;i=RegionIntersection;(*s=ImplicitRegion*)

n1=8;n2=16;w8=.78 Table[{Cos[2\[Pi] k/n1],Sin[2\[Pi] k/n1]},{k,0,n1-1}];
w16=Table[{Cos[2\[Pi] k/n2],Sin[2\[Pi] k/n2]},{k,0,n2-1}];n=12;y1=.267;x2=1/Sqrt[2];w=1.8;v=1.85;
pts={{-w,w},{-w/4,w},{-w/4,w+w/8},{-5w/8,w+w/8},{-5w/8,w+5w/24},{5w/8,w+5w/24},{5w/8,w+w/8},{w/4,w+w/8},{w/4,w},
{w,w},{w,w/4},{w+w/8,w/4},{w+w/8,5w/8},{w+5w/24,5w/8},{w+5w/24,-5w/8},{w+w/8,-5w/8},{w+w/8,-w/4},{w,-w/4},
{w,-w},{w/4,-w},{w/4,-w-w/8},{(5 w)/8,-w-w/8},{(5 w)/8,-w-(5 w)/24},{-((5 w)/8),-w-(5 w)/24},{-((5 w)/8),-w-w/8},{-(w/4),-w-w/8},{-(w/4),-w},{-w,-w},
{-w,-w/4},{-w-w/8,-w/4},{-w-w/8,-5w/8},{-w-5w/24,-5w/8},{-w-5w/24,5w/8},{-w-w/8,5w/8},{-w-w/8,w/4},{-w,w/4}};

frame=RegionPlot[{
m[pts,Polygon[Range[Length[pts]]]], 
r[x^2+y^2<2.8,{x,y}], 
r[Or@@(((x-#)^2+(y-#2)^2<.1)&@@@w16),{x,y}], 
r[x^2+y^2<1,{x,y}],
r[x^2+y^2<1.4,{x,y}],
r[Or@@(((x-#)^2+(y-#2)^2<.15)&@@@w8),{x,y}],
r[x^2+y^2<1,{x,y}] , 
r[1.8 < x^2+y^2< 2.2,{x,y}] ,
r[2.4 < x^2+y^2< 2.8,{x,y}]},
BoundaryStyle->Directive[Thickness[.003],Black],
AspectRatio->1,
Frame-> False,
PlotStyle->{Darker@Green,White,Yellow,White,White,Red,White,Lighter@Brown,Yellow,Red}];

c=Cos[ArcTan[y1]];
p1={-c,y1};
p2={c,y1};
p3={-c,-y1};
p4={c,-y1};
p5={-x2,(x2+y1)/2};
p6={x2,(x2+y1)/2};
p7={-x2,-(x2+y1)/2};
p8={x2,-(x2+y1)/2};
p9={0.5,-x2};
p10={-0.5,-x2};
p11={0.5,-x2};
p12={-0.5,-x2};
p13={a=-.34,b=-.12};
p14={-a,b};
p15={0.5,x2};
p16={-0.5,x2};
t1=m[{{0,-1},p1,p2},t[{1,2,3}]];
t2=m[{{0,1},p3,p4},t[{1,3,2}]];
t3=m[{{0,-x2},p5,p6},t[{1,3,2}]];
t4=m[{{0,x2},p7,p8},t[{1,3,2}]];
t5=m[{{0,+y1},p9,p10},t[{1,3,2}]];
t6=m[{{0,p5[[2]]},p13,p14},t[{1,3,2}]];
t7=m[{{0,p13[[2]]},p15,p16},t[{1,3,2}]];
t8=m[{{0,p7[[2]]},{-.33,p1[[2]]-.12},{.33,p1[[2]]-.12}},t[{1,3,2}]];
t9=m[{{0,p3[[2]]},{z=-.23,0.063},{-z,.063}},t[{1,3,2}]];

innards=RegionPlot[{
d[t1,u[t5,t4,t2]],
d[t4,u[t1,t3,t5]],
d[t3,u[t7,t4,t2]], 
d[t2,u[t1,t7,t3]], 
d[t5,t1],   
d[t4,u[t1,t7]], 
d[t7,t2],
d[t3,u[t1,t2]],
d[t8,t2],  
d[t9,t5],  
d[t9,t6],  
i[t4,d[t6,t1]], 
i[t6,d[t5,t8]],  
i[t7,t9], 
d[i[t7,t8],t5], 
d[i[t5,t6],u[t7,t9]],
r[x^2+y^2<= .001,{x,y}],   
d[i[t7,t1 ],t6], 
d[t8,u[t5,t6]],
d[t6,u[t7,t8]],
d[i[t2,t5],u[t7,t8]],
d[i[t7,t3],t4],
d[i[t1,t3],u[t5,t4]],
d[i[t2,t4],u[t7,t3]],
d[i[t5,t4],t3]},
BoundaryStyle->Directive[Thickness[.003],Black],
Frame->False,
PlotStyle->{Blue,Red,Red,Blue,Blue,Blue,Blue,Blue,Blue,
Red,Red,Blue,Red,Yellow,Red,Red,Red,Blue,Blue,Blue,Blue,Red,Red,Red,Red}];

trim=Graphics[{RGBColor[0.92,0.8,0.],Thickness[.01],Line[Append[pts,{-w,w}]]}];
trim2=Graphics[{Brown,Thickness[.02],Line[Append[pts,{-w,w}]]}];
Show[frame,Graphics[{White,Disk[{0,0},.99]}],trim2,trim,innards]
DavidC
źródło
2
* wnętrzności, a to jest całkowicie niesamowite; mieć +1
Soham Chowdhury
Walczę również z kolorami tutaj, chociaż do tej pory mam tylko wewnętrzny okrąg z trójkątami. Muszę nadrobić zaległości;)
Teun Pronk
Teun Pronk, Pomaga użyć warstw do ramki (wszystko poza niebieskimi trójkątami). Płatki podobne do księżyca można uzyskać, renderując pełne koła i nakładając je na duży biały dysk, na którym renderowana jest centralna postać. Dla mnie najtrudniejsze jest zabarwienie wewnętrznych trójkątnych komórek.
DavidC,
To samo, bardzo trudne. Próbuję wypracować coś z rekurencją, ale nie mogę tego jeszcze uruchomić.
Teun Pronk
@DavidCarraher Naprawiłem część do kolorowania. Chcesz coś o tym poradzić?
Teun Pronk
2

Delphi [Prace w toku]

Ten jest naprawdę trudny.
Do tej pory mam tylko wewnętrzny okrąg z trójkątami, a mój kod jest ogromny.
Nie policzyłem jeszcze postaci, wiem, że mogę dużo zaoszczędzić na białych znakach itp.

Najpierw

Zrobiłem klasę TD T jest domyślnym prefiksem klasy, który nie jest obowiązkowy, ale ułatwia zobaczenie jego klasy, D oznacza Draw.

  TP = TPoint;
  TD = class
  private
    FCv: TCanvas;
    FC: TP;
    a:array[1..9,0..2]of TP;
    FB:TBitmap32;
    FWi: integer;
  public
    constructor Create(AC: TCanvas;CP:TP;W:integer);
    property cv: TCanvas read FCv;
    property c:TP read FC;
    property Wi:integer read FWi;
    procedure tr;
    procedure StartDrawing;
    procedure ft;          
  end;
const t=1>0;f=0>1;off=50;ic=500;

Zrobiłem też TPtyp, nie, nie, ponieważ są to moje inicjały, ale są krótsze niż TPointi pomyślałem, że wykorzystam wiele punktów.
właściwość Cjest punktem środkowym obszaru roboczego.
Procedury:
StartDrawing(do zmiany nazwy) odpala dla mnie wszystkie funkcje rysowania.
trpowoduje, że wszystkie trójkąty w okręgu (w tym samo koło)
ftpokolorują wszystkie trójkąty.
Zrobiłem też kilka stałych dla prawdy i fałszu, przesunięcia i wielkości koła.

Funkcje i procedury

Qzwróci punkt, w którym 2 linie przecinają się / przecinają.
Istnieje wiele zagnieżdżonych funkcji / procedur. Nie mam ochoty wyjaśniać ich wszystkich, ale jeśli zastanawiasz się, o co zawsze możesz zapytać.

Ukończ klasę

unit Unit3;
interface
Uses
  Windows,Sysutils, Classes, DateUtils, Math, Graphics, types,idglobal, gr32, gr32_polygons, GR32_Backends;
type
  TP = TPoint;
  TD = class
  private
    FCv: TCanvas;
    FC: TP;
    a:array[1..9,0..2]of TP;
    FB:TBitmap32;
    FWi: integer;
  public
    constructor Create(AC: TCanvas;CP:TP;W:integer);
    property cv: TCanvas read FCv;
    property c:TP read FC;
    property Wi:integer read FWi;
    procedure tr;
    procedure StartDrawing;
    procedure ft;
    const
      ic=500;
  end;
  const t=1>0;f=0>1;off=50;
implementation

function q(A1,A2,B1,B2:TP;out o:int16):TP;
Var
 a,b,c:Real;
 d,e:TP;
begin
 a:=A1.X*A2.Y-A1.Y*A2.X;
 b:=B1.X*B2.Y-B1.Y*B2.X;
 d:=A1.Subtract(A2);
 e:=B1.Subtract(B2);
 c:=1/((d.X*e.Y)-(d.Y*e.X));
 Result:=TP.Create(Round(((a*e.X)-(d.X*b))*c),Round(((a*e.Y)-(d.Y*b))*c));
 o:=Result.Y;
end;
constructor TD.Create(AC: TCanvas; CP:TP;W:integer);
begin
  FCv:=AC;
  FC:=CP;
  FWi:=W;
  FB := TBitmap32.Create;
  FB.SetSize(W,W);
end;

procedure TD.ft;
var
  X,Y:int32;
  procedure cl(f,g:int32;e:TColor);
  begin
    fb.Canvas.Brush.Color:=e;
    fb.Canvas.FloodFill(f,g,clBlack32, fsBorder);
  end;
  function it(p1,p2: int32):int32;
  var i,r:int32;
  rgn:HRGN;
  begin
    r:=0;
    if fb.Pixel[x,y]<>clPurple32 then
      exit(50);
    for I := 1 to 9 do
    begin
      rgn:=CreatePolygonRgn(a[i],3,WINDING);
      if PtInRegion(rgn,p1,p2) then
        r:=r+1;
    end;
    it:=r;
  end;
begin
  Y:=c.Y;
  fb.Canvas.Brush.Color := clHighlight;
  fb.Canvas.FloodFill(1,1,clBlack32, fsBorder);
  X := c.X;
  cl(c.x-1,51,clWhite);
  for Y := 0 to fwi-1 do
    for X := 0 to fwi-1 do
      case it(x,y) of
        0,2,4,6,8:cl(x,y,clwhite);
        1,5:cl(x,y,clNavy);
        3,7:cl(x,y,clred);
      end;
end;
procedure TD.StartDrawing;
begin
  with fcv do
  begin
    Brush.Style := bsSolid;
    Brush.Color := clBtnFace;
    Ellipse(off,off,ic+off,ic+off);
    Brush.Style:=bsClear;
    tr;
    ft;
    CopyRect(ClipRect, FB.Canvas, FB.ClipRect);
    Brush.Color := clRed;
    Ellipse(c.X-10,c.Y-5,c.X+10,c.Y+15);
  end;
end;
procedure TD.tr;
const
  L=250;
var
  p1,w,v:tp;
  i:int16;
  r:TRect;
  function e(n:int16;b:boolean=f):TP;
  var r:single;
  begin
    r:=DegToRad(iif(b,n,(n*30)-90));
    Result := tp.Create(C.X +Round(L*Cos(r)),C.Y+Round(L*Sin(r)));
  end;
  function CS(Y:integer; L:boolean=t): tp;
  var
    I: integer;
  begin
    with FCv do
      if L then
      begin
        for I := 0+off to 499+off do
          if Pixels[I,Y]=0 then
            exit(TP.Create(I+1,Y));
      end
      else
        for i := 499+off downto 0+off do
          if Pixels[I,Y]=0 then
            exit(TP.Create(I-1,Y));
  end;
  procedure d(n,x,y:int16;b,c:TP);
  begin
    a[n][0]:=TP.Create(x,y);
    a[n][1]:=b;
    a[n][2]:=c;
  end;
  function Int(a,b,c,d,s1,s2:tp;h:int32):tp;
  var
    f,ww:tp;
    e:extended;
  begin
    f:=q(a,b,c,d,i);
    e:=ArcTan2(f.Y-h,f.X-c.X);
    ww:=tp.Create(C.X +ceil(500*Cos(e)),r.Bottom+ceil(500*Sin(e)));
    s2.Y:=ww.Y;
    Result:=q(f,ww,s1,s2,i);
  end;
begin
  r:=trect.Create(e(225,t),e(45,t));
  q(e(12),e(9),e(10),e(6),i);
  d(1,C.X,off+ic-1,CS(i),CS(i,f));
  q(e(12),e(8),e(9),e(6),i);
  d(2,C.X,off+1,CS(i),CS(i,f));
  w:=int(a[1][1],a[1][2],a[2][0],a[2][1],r.TopLeft,tp.Create(r.Left,0), r.Bottom);
  d(3,c.X,r.Bottom,w,tp.Create(r.Right,w.Y));
  w.Y:=r.Bottom-(w.Y-r.Top);
  d(4,c.X,r.Top,w,tp.Create(r.Right,w.Y));
  w:=int(a[1][0],a[1][1],a[4][1],a[4][2],tp.Create(r.Left,0),tp.Create(r.Bottom,0),r.Top);
  w.Y:=r.BottomRight.Y;
  v:=tp.Create(w);
  v.X := c.X+(c.X-w.X);
  d(5,c.X,a[1][1].Y,w,v);
  p1:=q(a[3][0],a[3][1],q(a[2][0],a[2][2],a[3][0],a[3][2],i),q(a[1][0],a[1][1],a[4][0],a[4][1],i),i);
  d(6,c.X,a[3][1].Y,p1,tp.Create(c.X+(c.X-p1.X),p1.Y));
  d(7,c.X,p1.Y, tp.Create(a[5][1]),tp.Create(a[5][2]));
  a[7][1].Y:=r.Top;
  a[7][2].Y:=r.Top;
  w:=q(a[6][0],a[6][1],a[7][0],a[7][1],i);
  w:=q(w,tp.Create(w.X-20,w.Y),a[4][0],a[4][1],i);
  d(8,c.X,a[4][1].Y,w,tp.Create(c.X+(c.X-w.X),w.Y));
  w:=q(a[5][0],a[5][1],a[7][0],a[7][1],i);
  w:=q(w,tp.Create(w.X-20,w.Y),a[6][0],a[6][1],i);
  d(9,c.X,a[2][1].Y,w,tp.Create(c.X+(c.X-w.X),w.Y));
  FB.Clear(clPurple32);
  FB.PenColor := clBlack32;
  fb.Canvas.Brush.Style:=bsClear;
  FB.Canvas.Ellipse(off,off,500+off,500+off);
  for I := 1 to 9 do
  begin
    p1:=a[i][0];
    w:=a[i][1];
    v:=a[i][2];
    FB.Line(p1.X,p1.Y,w.X,w.Y, fb.PenColor);
    FB.Line(p1.X,p1.Y,v.X,v.Y,fb.PenColor);
    FB.Line(v.X,v.Y,w.X,w.Y,fb.PenColor);
  end;
  FB.Canvas.Brush.Color := clYellow;
  FB.Canvas.FloodFill(c.X,c.Y,clBlack32, fsBorder);
end;
end.

Wynik do tej pory: (Tak, wiem, że linie nie wszędzie są idealne. Nie mogę znaleźć problemu :() wprowadź opis zdjęcia tutaj
Nie wiem dlaczego, ale trójkąty nie pokazują ich konturów. Ale robią to na moim zapisanym bmp.

Teun Pronk
źródło
Wszelkie aktualizacje na ten temat?
Taylor Scott,