Wizualizacja słów

20

Biorąc pod uwagę słowo składające się wyłącznie z małych liter, wykonaj następujące czynności:

  1. Dla każdej litery uzyskaj pierwszą faktoryzację jej pozycji w alfabecie.
  2. Dla każdego czynnika pierwszego, p , narysuj diament o długości boku p i przyklej literę na środku rombu.
  3. Największy diament znajduje się w środku, kolejne mniejsze diamenty (od największego do najmniejszego) naprzemiennie przechodzą na dół lub do góry.

Uwaga: Dla listu użyć boku długości 1.

Przykład: cat

  • c : 3 = 3
  • a : 1 = 1
  • t : 20 = 5 * 2 * 2

Schemat:

                 .
                . .
               . t .
                . .
                 .
                 .
                . .
   .           .   .
  . .         .     .
 .   .   .   .       .
.  c  . .a. .    t    .
 .   .   .   .       .
  . .         .     .
   .           .   .
                . .
                 .
                 .
                . .
               . t .
                . .
                 .

Przykład: pies

  • d : 4 = 2 * 2
  • o : 15 = 5 * 3
  • g : 7 = 7

Diagram:

                         .
                        . .
           .           .   .
          . .         .     .
         .   .       .       .
  .     .     .     .         .
 . .   .       .   .           .
. d . .    o    . .      g      .
 . .   .       .   .           .
  .     .     .     .         .
  .      .   .       .       .
 . .      . .         .     .
. d .      .           .   .
 . .       .            . .
  .       . .            .
         .   .
        .  o  .
         .   .
          . .
           .

-20% premii, jeśli Twój program wyświetli plik tekstowy o nazwie „[twoje-słowo] .txt”. Następnie wprowadź prawdziwe słowo (lub frazę, małe litery bez spacji), które ma co najmniej 20 liter i nikt jeszcze nie wybrał, i wklej wynik od <pre>a do </pre>odpowiedzi.

geokavel
źródło
Twoje przykłady wydają się używać diamentów o rozmiarze p + 1 kropek ...
Jaykul,
3
@Jaykul Dobre pytanie. Długość boku zależy od liczby odstępów między kropkami.
geokavel

Odpowiedzi:

8

Matlab, 466 393 - 20% = 314,4 bajtów

Gra w golfa: (Mógłby zaoszczędzić trochę więcej bajtów, również dzięki pomocy @ AndreasDeak!)

function q(W);function z=g(l,c);[x,y]=ndgrid(abs(-l:l));z=0*y;z(~x&~y)=c;z(x+y==l)=46;end;w=W-96;n=numel(w);R=n*26;C=1;A=zeros(2*R);for k=1:n;f=sort(factor(w(k)));C=C+max(f)+1;d=-1;r=R;for F=fliplr(f);v=-F:F;while norm(A(r+v,v+C));r=r+d;end;A(r+v,v+C)=g(F,W(k));d=-d;end;C=C+max(f);end;A=A(find(sum(A,2)),find(sum(A)));f=fopen([W,'.txt'],'w');for k=1:size(A,1);fprintf(f,[A(k,:),'\n']);end;end

Powinien również działać w Octave (opensource), ale tylko z dużą ilością ostrzeżeń. Użyj tej wersji, jeśli chcesz wypróbować ją w oktawie (wyjście do konsoli zamiast pliku):

function q(W);function z=g(l,c);[x,y]=ndgrid(abs(-l:l));z=0*y;z(~x&~y)=c;z(x+y==l)=46;end;w=W-96;n=numel(w);R=n*26;C=1;A=zeros(2*R);for k=1:n;f=sort(factor(w(k)));C=C+max(f)+1;d=-1;r=R;for F=fliplr(f);v=-F:F;while norm(A(r+v,v+C));r=r+d;end;A(r+v,v+C)=g(F,W(k));d=-d;end;C=C+max(f);end;A=A(find(sum(A,2)),find(sum(A)));disp([A,'']);end

Nie golfił i wyjaśnił:

function q(W)
function z=g(l,c) %get a square matrix for one prime factor
[x,y]=ndgrid(abs(-l:l));
z=0*y;
z(~x&~y)=c;    %character in the middle
z(x+y==l)=46;  %dots
end;
w=W-96;                %convert word to the corresponding indices                  
n=numel(w);
R=n*26;                %keeps track of the main row 
C=1;                   %keeps track of the current column
A=zeros(2*R);          %make a 'canvas' matrix that is way to big 
for k=1:n;
    f=sort(factor(w(k)));          %get all the factors of current character
    C=C+max(f)+1;                  %update current column
    d=-1;                          %search direction
    r=R;
    for F=fliplr(f);              
        v=-F:F;
        while norm(A(r+v,v+C));    %go up or down until there is enough space to write the prime factor
            r=r+d;
        end;
        A(r+v,v+C)=g(F,W(k));     %insert all the prime factors
        d=-d;
    end;
    C=C+max(f);
end;
A=A(find(sum(A,2)),find(sum(A))); %truncate all the unneccessary padding
f=fopen([W,'.txt'],'w');     %write to file
for k=1:size(A,1);
    fprintf(f,[A(k,:),'\n']);
end;

end

Żądane słowo: (I tutaj jako plik: (bardzo pomniejsz): supercalifragilisticexpialidocious.txt )

                       . . .                   
                      . . . . . .                  
                     . . . . . .                 
                    . . . . . .                
                   . . . . . .               
                  . . . . . .              
                 . . . . . .             
                . . . . . .            
               . . . . . .           
              . . . . . . .          
             . . . . . . . .         
            . . . . . . . . . t. . . . .        
           . . . . . . . . . . . . . . . . . . . . . . . . .       
          . . . . . . . r. . l. . r. . . . l. . . . . x. . . . l. . . . .      
         . . . . . p. . . . . . . . . . . . . . . . . . . p. . . . . . . . .     
        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    . s .. u .. p .. e .. r .. c ..a .. l .. i .. f .. r ..a .. g .. i .. l .. i .. s. . t .. i .. c .. e .. x .. p .. i ..a .. l .. i .. d .. o .. c .. i .. o .. u .. s .
     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    
         . . . . . p. . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. . . . . . . . d. . . . . . . . .     
          . . . . . . . . . l. . . . f. . . . . . . . l. . . . . . . . . x. . . . . . l. . . . . . . . . . . . .      
           . . . . . r. . . . ja . . . . r. . . ja . . . . ja . . . . . . ja . . . . . ja . . . . ja . . . . . ja . . . . . .       
            . . . . . . . . . . . . . . . . . . . . t. . . . . . . . . . . . . . . . . . .        
             . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o. . . . o. . . . .         
              . . . . . p. . . . . . . . . . . . . p. . . . . . . . . . . .          
               . . . u. . . . . . x. . . . . . . . u. . .           
                . . . . . . . . . . . . . . . .            
                 . . . . . . . . . . .             
                  . . . . . . . .              
                   . . . . . .               
                    . . . . . .                
                     . . . . . .                 
                      . . . . . .                  
                       . . .                   
wada
źródło
Czy nie A=A(find(sum(A,2)),find(sum(A)));wystarczyłoby zdjęcie poduszki w jednym kroku?
Andras Deak,
Właściwie uzyskałem doskonałe wyniki, kiedy wkleiłem tekst wyjściowy między dwoma <pre>znacznikami. Dlaczego tego nie spróbujesz!
geokavel
Czy na pewno potrzebujesz sort(factor())? MATLAB factorwydaje się być już posortowany. I możesz zdefiniować zmienną max(f), ponieważ wydaje się, że używasz tej samej ilości dwa razy.
Andras Deak
1
@geokavel Myślę, że patrzysz na to odwrotnie :) Z [biblii] (en.wikipedia.org): MATLAB -> „Initial release - 1984”, GNU Octave -> Initial release - 1988 ". Jak czy to możliwe, że Mathworks pozwala na skopiowanie ich komercyjnego produktu do tak drobnych szczegółów? A może chodziło Ci o to, dlaczego nadal jest to opłacalne: Jestem pewien, że dostępne zestawy narzędzi i funkcje MATLAB są znacznie lepsze niż Octave (chociaż składnia Octave jest czasem bogatsza! Myślę, że nie wspominając już o prędkości
Andras Deak
1
@geokavel Jest tak, jak powiedział AndrasDeak: Octave jest klonem Matlaba, ale niestety nie idealnym, ponieważ programiści próbowali również poprawić język. Oto nieco zmodyfikowana wersja, która działa również w tłumaczu
flawr
6

Funciton , niekonkurencyjny, 29199 bajtów

Podobało mi się to wyzwanie, ponieważ zwróciło uwagę na brak niektórych bardzo przydatnych funkcji bibliotecznych. Uwzględnię tutaj wszystkie te funkcje (i liczbę bajtów), ponieważ napisałem je po opublikowaniu tego wyzwania.

Pełne źródło w jednym pliku

Wyjaśnienie

Jak zawsze, uzyskaj lepsze renderowanie, wykonując javascript:(function(){$('pre,code').css({lineHeight:5/4});})()w konsoli przeglądarki.

ɹ Odwróć

Jak zapewne wiesz, ale nie musisz, Funciton jest wyposażony w bibliotekę pełną funkcji list , które są wartościami zakodowanymi w jedną ogromną liczbę całkowitą, a także osobną bibliotekę dla leniwie ocenianych sekwencji , które używają wyrażeń lambda (funkcje anonimowe) w aby być leniwym. Oczywiście istnieje również biblioteka funkcji obsługi ciągów.

Do tego wyzwania potrzebowałem funkcji do odwrócenia ciągu znaków oraz funkcji do odwrócenia sekwencji leniwej. Zaskakujące, że miałem tylko jedną na listy - dokładnie tę, której nie potrzebowałem. Oto funkcje odwrotne dla leniwych sekwencji ( ɹ) i stringów ( ):

              ╓───╖             ╔════╗ ┌────╖        ╓───╖
              ║ ɹ ║             ║ 21 ╟─┤ >> ╟──┐     ║ ⇄ ║
              ╙─┬─╜             ╚════╝ ╘═╤══╝  │     ╙─┬─╜      ┌──┐
          ┌─────┴─────┐                ┌─┴─╖   ├───────┴────────┤  │
        ┌─┴─╖ ┌───╖   │                │ ⇄ ║   │   ╔════╗ ┌───╖ │  │
      ┌─┤   ╟─┤ ɹ ╟─┐ │                ╘═╤═╝   │   ║ −1 ╟─┤ ≠ ╟─┴┐ │
      │ └─┬─╜ ╘═══╝ │ │                ┌─┴─╖ ┌─┴─╖ ╚════╝ ╘═╤═╝  │ │
      │   │   ┌───╖ │ │                │ ‼ ╟─┤ ? ╟──────────┤    │ │
      │   └───┤ ʬ ╟─┘ │                ╘═╤═╝ ╘═╤═╝  ╔═══╗ ┌─┴─╖  │ │
      │       ╘═╤═╝   │                ┌─┴─╖ ╔═══╗  ║ 0 ╟─┤ ≠ ╟──┘ │
      │ ╔═══╗ ┌─┴─╖   │              ┌─┤ ʃ ╟─╢ 1 ║  ╚═╤═╝ ╘═══╝    │
      └─╢ 0 ╟─┤ ? ╟───┘              │ ╘═╤═╝ ╚═══╝    │            │
        ╚═══╝ ╘═╤═╝                  │   └────────────┘            │
                │                    └─────────────────────────────┘

Leniwe sekwencje ʬ, których się używa , to „dołącz element na końcu leniwej sekwencji”. Ciąg, którego się używa ʃ(podciąg) i (ciąg konkatenacji).

Imes Liczby pierwsze

Chociaż mogłem dokonać podziału na czynniki pierwsze, próbując po prostu podzielić n przez wszystkie czynniki w kolejności, zdecydowałem, że chcę funkcji biblioteki, która generuje liczby pierwsze. Poniższa funkcja przyjmuje liczbę całkowitą n i implementuje sito Eratostenesa w celu wygenerowania wszystkich liczb pierwszych do n . Robi to jako sekwencję leniwą, więc generuje tylko tyle liczb pierwszych, ile faktycznie oceniasz.

                                       ╓───╖
                                       ║ Ṗ ║
                                 ╔═══╗ ╙─┬─╜
                                 ║ 0 ║ ┌─┴─╖
                                 ╚═╤═╝ │ ♭ ║
                          ╔═══╗ ┌──┴─╖ ╘═╤═╝
                          ║ 2 ╟─┤ Ṗp ╟───┘
                          ╚═══╝ ╘══╤═╝
    ┌──────────────┐               │
    │              ├─────────────────────────────────────────┐
    │            ┌─┴─╖                                       │
    │          ┌─┤ · ╟────────────────────────────┐   ╓┬───╖ │
    │          │ ╘═╤═╝                            ├───╫┘Ṗp ╟─┤
    │          │   │           ╔═══╗ ┌────╖     ┌─┴─╖ ╙─┬──╜ │
    │          │   │           ║ 1 ╟─┤ >> ╟─────┤ · ╟───┴─┐  │
    │          │   │  ┌───╖    ╚═══╝ ╘══╤═╝     ╘═╤═╝     │  │
    │          │ ┌─┴──┤ ♯ ╟─────┐    ┌──┴─╖ ┌───╖ │       │  │
    │          │ │    ╘═══╝ ┌─┐ │ ┌──┤ Ṗp ╟─┤ ♭ ╟─┴─┐     │  │
    │          │ │          ├─┘ └─┤  ╘══╤═╝ ╘═══╝ ┌─┘     │  │
    │          │ │        ╔═╧═╕ ┌─┴─╖ ┌─┴─╖     ┌─┴─╖     │  │
    │          │ └────────╢   ├─┤ · ╟─┤ ? ╟─────┤ · ╟─┐   │  │
    │          │ ┌───╖    ╚═╤═╛ ╘═╤═╝ ╘═╤═╝     ╘═╤═╝ │   │  │
    │        ┌─┴─┤ ♭ ╟─┐ ┌──┴─╖   │   ┌─┴─╖       │   │   │  │
    │        │   ╘═══╝ └─┤ Ṗp ╟───┘ ┌─┤ ? ╟───────┘   │   │  │
    │ ┌───╖  │  ╔════╗   ╘══╤═╝     │ ╘═╤═╝           │   │  │
  ┌─┴─┤ ÷ ╟──┘  ║ −1 ║   ┌──┴─╖   ╔═╧═╗ │            ┌┴┐  │  │
  │   ╘═╤═╝     ╚══╤═╝ ┌─┤ >> ╟─┐ ║ 0 ║              └┬┘  │  │
  │   ┌─┴─╖ ┌────╖ │   │ ╘════╝ │ ╚═══╝               │   │  │
  │   │ × ╟─┤ << ╟─┘ ┌─┴─┐    ╔═╧═╗                   │   │  │
  │   ╘═╤═╝ ╘══╤═╝  ┌┴┐ ┌┴┐   ║ 1 ╟───────────────────┴─┐ │  │
  └─────┘     ┌┴┐   └┬┘ └┬┘   ╚═══╝                     ├─┘  │
              └┬┘    │   └──────────────────────────────┘    │
             ┌─┴─╖ ┌─┴──╖                                    │
             │ ÷ ╟─┤ << ╟─┐                                  │
             ╘═╤═╝ ╘════╝ ├──────────────────────────────────┘
              ┌┴┐         │
              └┬┘         │
      ╔════╗ ┌─┴──╖       │
      ║ −1 ╟─┤ << ╟───────┘
      ╚════╝ ╘════╝

Funkcja pomocnika Ṗpprzyjmuje:

  • Licznik bieżący, który po prostu zmniejsza się, aż osiągnie wartość 0.

  • Sito, które ma ustawiony bit dla każdej liczby, o której wiadomo, że nie jest liczbą pierwszą. Początkowo najmniej znaczący bit reprezentuje liczbę 2, ale przesuwamy to w prawo z każdą iteracją.

  • Liczba n wskazująca, jaka liczba jest reprezentowana przez najniższy bit sita; jest to zwiększane z każdą iteracją.

Przy każdej iteracji, jeśli najniższy bit sita wynosi 0, znaleźliśmy liczbę pierwszą n . Następnie używamy wzoru, który już opisałem w Wypełnianie wierszy, kolumn i przekątnych siatki NxN, aby ustawić co n- ty bit w sicie przed przejściem do następnej iteracji.

Faktoryzacja pierwotna

                             ╓───╖
                             ║ Ḟ ║
                             ╙─┬─╜
                       ┌───────┴──────┐
                       │ ┌───╖ ┌────╖ │
                       └─┤ Ṗ ╟─┤ Ḟp ╟─┘
                         ╘═══╝ ╘═╤══╝
                                 │
               ┌────────────────────────────────────────────┐
               │                                     ╓┬───╖ │
       ┌───────┴─┐     ┌───────────────────────┐   ┌─╫┘Ḟp ╟─┘
       │ ╔═══╗ ┌─┴─╖ ┌─┴─╖ ┌───┐ ┌────╖      ┌─┴─╖ │ ╙────╜
       │ ║ 0 ╟─┤   ╟─┤ · ╟─┘┌┐ └─┤ Ḟp ╟──┐ ┌─┤ · ╟─┴──┐
       │ ╚═══╝ └─┬─╜ ╘═╤═╝  └┤   ╘═╤══╝  ├─┘ ╘═╤═╝    │
       │       ┌─┴─┐ ┌─┴─╖ ╔═╧═╕ ┌─┴─╖ ┌─┴─╖ ┌─┴──╖ ┌─┴─╖
       │       │   └─┤ · ╟─╢   ├─┤ ? ╟─┤ · ╟─┤ ÷% ╟─┤ · ╟─┐
       │       │     ╘═╤═╝ ╚═╤═╛ ╘═╤═╝ ╘═╤═╝ ╘═╤══╝ ╘═╤═╝ │
       │       │    ┌──┴─╖   │   ┌─┴─╖ ┌─┴─╖   └──────┘   │
       │       │    │ Ḟp ╟───┘ ┌─┤ ? ╟─┤ ≤ ║              │
       │     ┌─┴─╖  ╘══╤═╝     │ ╘═╤═╝ ╘═╤═╝              │
       └─────┤ · ╟─────┘     ╔═╧═╗ │   ╔═╧═╗              │
             ╘═╤═╝           ║ 0 ║     ║ 2 ║              │
               │             ╚═══╝     ╚═══╝              │
               └──────────────────────────────────────────┘

Jest to dość proste. Po prostu iteruj przez liczby pierwsze do n i zobacz, które dzielą n . Jeśli ktoś dzieli n , pamiętaj, aby kontynuować z tą samą liczbą pierwszą, abyśmy zwrócili go wiele razy, jeśli podzieli n wiele razy. Zwraca pustą sekwencję dla dowolnej liczby mniejszej niż 2.

Wygeneruj diament

Ta funkcja generuje pojedynczy diament na podstawie znaku i promienia. Używa tylko postaci, aby umieścić ją na środku rombu.

                                   ┌───╖
             ┌─────────────────────┤ ♯ ╟───────────┬─────────┐
             │ ┌───╖ ╔═══╗   ┌───┐ ╘═══╝           │         │
             └─┤ ♫ ╟─╢ 0 ║   │ ┌─┴─╖               │         │
               ╘═╤═╝ ╚═══╝   │ │ ʭ ╟───┐           │         │
               ┌─┴─╖   ┌─────┘ ╘═╤═╝   │           │         │
               │ ɱ ╟───┤ ┌───╖ ┌─┴─╖ ╔═══╗   ╓───╖ │         │
               ╘═╤═╝   └─┤ ɹ ╟─┤ ʓ ╟─╢ 1 ║ ┌─╢ ◇ ╟─┤         │
                 │ ╔═══╗ ╘═══╝ ╘═══╝ ╚═══╝ │ ╙───╜ │         │
                 │ ║ 0 ║                   │     ┌─┴─╖       │
                 │ ╚═╤═╝                   │     │ ♭ ║       │
               ╔═╧═╕ │   ╔════╗            │     ╘═╤═╝       │
           ┌───╢   ├─┘ ┌─╢ 21 ║          ┌─┴─╖   ┌─┴─╖     ┌─┴─┐
           │   ╚═╤═╛   │ ╚════╝ ┌────────┤ · ╟───┤ · ╟─┐ ┌─┴─╖ │
           │   ┌─┴─╖ ┌─┴──╖ ┌───┘        ╘═╤═╝   ╘═╤═╝ ├─┤ = ║ │
           │ ┌─┤ ‼ ╟─┤ >> ║ │              │     ┌─┴─╖ │ ╘═╤═╝ │
           │ │ ╘═══╝ ╘═╤══╝ │              │   ┌─┤ ? ╟─┘   │   │
           │ │   ┌───╖ │ ┌──┘              │   │ ╘═╤═╝     │   │
           │ └─┬─┤ ⇄ ╟─┘ │     ┌─────┐     │   │ ┌─┴─╖     │   │
           │   │ ╘═══╝ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ └─┤ · ╟──┬──┘   │
           │   └───────┤ · ╟─┤ ? ╟─┤ · ╟─┤ ‼ ║   ╘═╤═╝  │      │
           │           ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝   ┌─┴─╖  │      │
           │             └─────┘     └─┬───┘ ┌───┤ … ║  │      │
           │               ┌─────┐     │     │   ╘═╤═╝  │      │
           │            ╔══╧═╗ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ╔═╧══╗ │      │
           │            ║ 32 ║ │ … ╟─┤ ‼ ╟─┤ ‼ ║ ║ 32 ║ │      │
           │            ╚════╝ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╚════╝ │      │
           │                   ┌─┴─╖       ╔═╧══╗       │      │
           │               ┌───┤ − ╟───┬─┐ ║ 46 ║       │      │
           │             ┌─┴─╖ ╘═══╝   │ │ ╚════╝       │      │
           └─────────────┤ · ╟─────────┘ └──────────────┘      │
                         ╘═╤═╝                                 │
                           └───────────────────────────────────┘

To często wykorzystuje leniwe sekwencje. Oto jak to działa:

  • Wygeneruj sekwencję liczb całkowitych od 0 do r (włącznie).

  • Dla każdej takiej liczby całkowitej α , wygeneruj ciąg składający się z ( r - α ) spacji ( ), następnie kropki, a następnie spacji α - chyba że α = r , w którym to przypadku wygeneruj jedną mniejszą spację i dopisz literę. Mamy teraz lewą górną ćwiartkę diamentu.

  • Do każdego z tych ciągów dołącz kolejną kopię tego samego ciągu, ale ze znakami odwróconymi ( ), a następnie usuniętym pierwszym znakiem ( >> 21). Mamy teraz górną połowę diamentu.

  • Weź tę sekwencję i dołącz do niej tę samą sekwencję, ale odwróconą ( ɹ) i z usuniętym pierwszym elementem ( ʓ). Teraz mamy cały diament.

Teraz mamy łańcuchy, które składają się na diament, ale potrzebujemy trochę więcej informacji. Musimy wiedzieć, gdzie znajduje się pionowy środek diamentu. Początkowo jest to oczywiście r , ale kiedy dodamy inne diamenty na górze i na dole tego, będziemy musieli śledzić pozycję „środkowego” diamentu, abyśmy mogli poprawnie wyrównać pozostałe stosy diamentów w pionie . To samo dotyczy poziomej rozpiętości diamentu (potrzeba tego przy dołączaniu diamentów na górze i na dole). Postanowiłem również śledzić list; Potrzebuję tego, ponieważ w przeciwnym razie funkcja (do której przejdziemy w następnej sekcji) musiałaby mieć cztery parametry, ale Funciton dopuszcza tylko trzy.

                             ┌─────────────────┐
                             │  ╓───╖          │
                             ├──╢ ◆ ╟──┐       │
                             │  ╙───╜  │       │
                             │   ┌─────┴───┐   │
                           ┌─┴─╖ │ ┌───╖ ┌─┴─╖ │
                         ┌─┤ · ╟─┴─┤ › ╟─┤ › ║ │
                         │ ╘═╤═╝   ╘═╤═╝ ╘═╤═╝ │
                         │ ┌─┴─╖     │   ┌─┴─╖ │
                         │ │ ◇ ╟─────────┤ › ╟─┘
                         │ ╘═╤═╝         ╘═══╝
                         └───┘

Używamy interfejsu API listy ( dodaje elementy na początku listy), aby utworzyć strukturę zawierającą [ x , y , c , q ], gdzie x jest współrzędną x poziomego środka diamentu, y jest y- współrzędna linii podstawowej, c jest literą, a q jest leniwą sekwencją ciągów. Ta struktura będzie odtąd wykorzystywana do przechowywania wszystkich etapów pośrednich.

Dołącz diamenty pionowo

Ta funkcja przyjmuje istniejący stos diamentów, promień i wartość logiczną wskazującą, czy dodać nowy diament do góry (prawda) czy do dołu (fałsz).

                 ┌─────────────────────────────────────────────────┐
               ┌─┴─╖         ┌───────────────────────────┐ ┌───╖ ┌─┴─╖
           ┌───┤ · ╟─────────┘ ╔═══╗ ┌───────────────┐   ├─┤ ‹ ╟─┤ ‹ ║
           │   ╘═╤═╝           ║ 1 ║ │ ╓───╖         │   │ ╘═╤═╝ ╘═╤═╝
           │     │             ╚═╤═╝ └─╢ ⬗ ╟─┐       │ ┌─┴─╖ │   ┌─┴─╖
           │     │ ┌───╖ ┌───╖ ┌─┴──╖  ╙─┬─╜ │       └─┤ · ╟─┘ ┌─┤ ‹ ╟─┐
           │   ┌─┴─┤ + ╟─┤ ♯ ╟─┤ << ║    │   │         ╘═╤═╝   │ ╘═══╝ │
           │   │   ╘═╤═╝ ╘═══╝ ╘═╤══╝    │ ┌─┴─╖         │     │       │
           │   │   ┌─┴─╖         └───────┴─┤ · ╟───┐   ┌─┴─╖   │       │
           │   └───┤ ? ╟─┐                 ╘═╤═╝ ┌─┴───┤ · ╟─┐ │       │
           │       ╘═╤═╝ ├───────────────────┘   │     ╘═╤═╝ │ │       │
           │ ┌───╖ ┌─┴─╖ │               ┌─────┐ │ ┌───╖ │   │ │       │
           └─┤ › ╟─┤ › ║ │       ┌───╖ ┌─┴─╖   │ └─┤ − ╟─┘   │ │       │
             ╘═╤═╝ ╘═╤═╝ │     ┌─┤ ‼ ╟─┤ ‼ ║   │   ╘═╤═╝     │ │       │
               │   ┌─┴─╖ │     │ ╘═╤═╝ ╘═╤═╝ ┌─┴─╖ ┌─┴─╖     │ │       │
               ┌───┤ · ╟─┘     │ ┌─┴─╖   ├───┤ · ╟─┤ … ║     │ │       │
     ┌───┐     │   ╘═╤═╝       └─┤ · ╟───┘   ╘═╤═╝ ╘═╤═╝     │ │       │
     │ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖         ╘═╤═╝         │  ╔══╧═╗     │ │       │
     │ │ ʭ ╟─┤ ? ╟─┤ › ╟─┐ ╔═══╗ ╔═╧═╕         │  ║ 32 ║     │ │       │
     │ ╘═╤═╝ ╘═╤═╝ ╘═══╝ │ ║ 0 ╟─╢   ├─────────┘  ╚════╝     │ │       │
     │ ┌─┘   ┌─┴─╖       │ ╚═══╝ ╚═╤═╛                       │ │       │
     │ └─┬───┤ ʭ ╟─┐   ┌─┴─╖     ┌─┴─╖                       │ │       │
     │ ┌─┴─╖ ╘═══╝ ├───┤ · ╟─────┤ ɱ ║                       │ │       │
     └─┤ · ╟───────┘   ╘═╤═╝     ╘═╤═╝                       │ │       │
       ╘═╤═╝             │       ┌─┴─╖                       │ │       │
         │               └─────┬─┤ ◇ ╟───────────────────────┘ │       │
         │                     │ ╘═══╝                       ┌─┴─╖     │
         │                     └─────────────────────────────┤ · ╟─────┘
         │                                                   ╘═╤═╝
         └─────────────────────────────────────────────────────┘

Jest to również dość proste; użyj do rozpakowania struktury; służy do generowania nowego diamentu; użyj ɱ(map), aby dodać spacje na początku i na końcu każdego łańcucha w nowym diamentie, aby wszystkie miały tę samą szerokość; dołącz ( ʭ) nowe ciągi znaków do starego (jeśli dolny) lub starego do nowego (jeśli górny); i na koniec użyj do zbudowania struktury zawierającej wszystkie nowe wartości. W szczególności, jeśli dołączamy do dołu, y się nie zmienia, ale jeśli dołączamy do góry, y musi wzrosnąć o ♯(r << 1)( r jest promieniem nowego diamentu).

Połącz stosy poziomo

To największa funkcja ze wszystkich. Nie zaprzeczę, że to było dość kłopotliwe, aby to dobrze zrobić. Zajmuje dwa stosy i łączy je w poziomie, z zachowaniem prawidłowego wyrównania w pionie.

                           ┌──────────────────────────────────┬───────────────────────┐
                           │     ┌──────────────────┐       ┌─┴─╖                   ┌─┴─╖
                           │     │    ┌───────────┐ └───────┤ · ╟───┬───────────────┤ · ╟─────────────┐
                           │     │  ┌─┴─╖         │         ╘═╤═╝   │               ╘═╤═╝             │
                           │     │  │ ‹ ╟───┐     │         ┌─┴─╖ ┌─┴─╖               │               │
                           │     │  ╘═╤═╝ ┌─┴─╖   └─────────┤ · ╟─┤ · ╟─────────┐     │               │
                           │     │    ├─┐ │ ‹ ╟───┐         ╘═╤═╝ ╘═╤═╝         │     │               │
                           │     │    └─┘ ╘═╤═╝ ┌─┴─╖ ╓───╖ ┌─┴─╖   │           │     │               │
                           │     │          │   │ ‹ ╟─╢ ❖ ╟─┤ ‹ ║   │           │     │               │
                           │     │          │   ╘═╤═╝ ╙───╜ ╘═╤═╝ ┌─┴─╖ ┌─┐     │     │               │
                           │     │          │     │           └───┤ ‹ ║ └─┤     │     │               │
                           │     │          │     │               ╘═╤═╝ ┌─┴─╖   │     │               │
                           │     │          │     │                 └───┤ ‹ ║   │     │               │
                           │     │          │     └─────────────────┐   ╘═╤═╝   │     │               │
                           │     │          │                     ┌─┴─╖ ┌─┴─╖ ┌─┴─╖ ┌─┴─╖             │
                           │     │          │      ┌──────────────┤ · ╟─┤ · ╟─┤ · ╟─┤ · ╟──────┐      │
                           │     │          └──────┤              ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ ╘═╤═╝      │      │
                           │   ┌─┴─╖             ┌─┴─╖            ┌─┴─╖   │     │     │        │      │
                           │ ┌─┤ · ╟─────────────┤ · ╟────────────┤ · ╟───┘     │     │        │      │
                           │ │ ╘═╤═╝             ╘═╤═╝            ╘═╤═╝         │     │        │      │
                           │ │   │                 │         ┌────╖ │         ┌─┴─╖   │        │      │
       ╔═══╗ ┌────╖        │ │   │                 │       ┌─┤ << ╟─┴─────────┤ · ╟─┐ │        │      │
       ║ 1 ╟─┤ << ╟────────┘ │   │                 │       │ ╘═╤══╝           ╘═╤═╝ │ │        │      │
       ╚═══╝ ╘═╤══╝ ╔════╗   │   │               ┌─┴─╖     │ ┌─┴─╖              │   │ │     ┌──┴──┐   │
             ┌─┴─╖  ║ 32 ╟─┐ │   │ ┌─────────────┤ · ╟───┐ │ │ ♯ ║              │   │ │   ┌─┴─╖ ┌─┴─╖ │
             │ ♯ ║  ╚════╝ │ │   └─┤ ┌───╖       ╘═╤═╝   │ │ ╘═╤═╝ ┌───╖ ╔════╗ │   │ │ ┌─┤ ? ╟─┤ < ║ │
             ╘═╤═╝   ┌───╖ │ │     └─┤ − ╟─────────┴─┐   │ │   └───┤ … ╟─╢ 32 ║ │   │ │ │ ╘═╤═╝ ╘═╤═╝ │
               └─────┤ … ╟─┘ │       ╘═╤═╝         ┌─┴─╖ │ └───┐   ╘═╤═╝ ╚════╝ │   │ │ │ ┌─┴─╖   ├───┘
                     ╘═╤═╝   │ ┌───╖ ┌─┴─╖ ┌───────┤ · ╟─┴─┐ ╔═╧═╗ ┌─┴─╖ ┌──────┘   │ │ └─┤ · ╟───┘
                       │   ┌─┴─┤ ʭ ╟─┤ ȶ ║ │ ┌───╖ ╘═╤═╝   │ ║ 1 ║ │ ⁞ ║ │ ┌────────┘ │   ╘═╤═╝
                     ┌─┴─╖ │   ╘═╤═╝ ╘═╤═╝ └─┤ > ╟───┴─┐   │ ╚═══╝ ╘═╤═╝ │ │   ┌──────┘     └────┐
                     │ ⁞ ║ │   ┌─┴─╖ ┌─┴─╖   ╘═╤═╝     │ ┌─┴─╖ ┌───╖ │   │ │ ┌─┴─╖ ┌───╖ ┌───╖ ┌─┴─╖
                     ╘═╤═╝ └───┤ ? ╟─┤ · ╟─────┴─┐     │ │ − ╟─┤ ȶ ╟─┴─┐ │ │ │ + ╟─┤ ♯ ╟─┤ › ╟─┤ › ║
                     ┌─┴─╖     ╘═╤═╝ ╘═╤═╝       │     │ ╘═╤═╝ ╘═╤═╝   │ │ │ ╘═╤═╝ ╘═══╝ ╘═╤═╝ ╘═╤═╝
┌────────────────────┤ · ╟───────┴───┐ └─┐     ┌─┴─╖   └───┘   ┌─┴─╖   │ │ └───┘           │     │
│                    ╘═╤═╝         ┌─┴─╖ │   ┌─┤ · ╟───────────┤ · ╟───┘ │                       │
│ ┌────────────────┐   │   ┌───────┤ · ╟─┘   │ ╘═╤═╝           ╘═╤═╝     │                       │
│ │ ╔════╗ ┌───╖ ┌─┴─╖ └───┤ ┌───╖ ╘═╤═╝     │   │               │     ┌─┴───┐                   │
│ │ ║ 32 ╟─┤ ‼ ╟─┤ · ╟───┐ └─┤ ʭ ╟───┘       │   │             ┌─┴─╖ ┌─┴─╖ ┌─┴─╖                 │
│ │ ╚════╝ ╘═╤═╝ ╘═╤═╝   │   ╘═╤═╝     ┌─────┘   │             │ ʭ ╟─┤ · ╟─┤ ? ╟─┐               │
│ │        ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖   ┌─┴─╖       │             ╘═╤═╝ ╘═╤═╝ ╘═╤═╝ │               │
│ │        │ ‼ ╟─╢   ├─╢   ├─┤ ʑ ╟───┤ ʭ ║     ┌─┴─╖             └─────┘     │   │               │
│ │        ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝   ╘═╤═╝ ┌───┤ · ╟─────────────────────────┘   │               │
│ └──────────┘     │   ╔═╧═╗   │       ├───┘   ╘═╤═╝                             │               │
│                  └───╢ 0 ║ ┌─┴─╖   ┌─┴─╖       └───────────────────────────────┘             ┌─┴─╖ ╔═══╗
│                      ╚═══╝ │ ȶ ╟───┤ · ╟─────────────────────────────────────────────────────┤ › ╟─╢ 0 ║
│                            ╘═╤═╝   ╘═╤═╝                                                     ╘═══╝ ╚═══╝
│                            ┌─┴─╖   ┌─┴─╖
│                      ┌─────┤ ? ╟─┐ │ ɕ ║
│                    ┌─┴─╖   ╘═╤═╝ │ ╘═╤═╝
│            ┌───╖ ┌─┤ < ╟───┬─┘   │   │
└────────────┤ ɕ ╟─┤ ╘═══╝ ┌─┴─╖   │   │
             ╘═══╝ └───────┤ · ╟───┘   │
                           ╘═╤═╝       │
                             └─────────┘

Oto jak to działa.

  • Najpierw dla każdego stosu wygeneruj nieskończoną sekwencję ( ) ciągów, z których każda zawiera spacje ( ) zgodnie z szerokością stosu.

  • Wartości y stosów mówią nam, które należy „przesunąć w dół” i o ile. Przygotuj odpowiednią sekwencję spacji, skróconą ( ȶ) do odpowiedniej długości (odpowiednio y1 - y2 lub y2 - y1 ).

  • Teraz określ długość każdej z sekwencji ciągów ( ɕ), która mówi nam o ich wysokości. Dowiedz się, który jest wyższy.

  • Dołącz nieskończone sekwencje kosmiczne do obu stosów.

  • Użyj zip ( ʑ), aby je połączyć. Dla każdej pary ciągów połącz je ( ) wraz z dodatkową spacją między nimi.

  • Następnie użyj przycisku, ȶaby skrócić wynik tego do najwyższej wysokości. Robiąc tak późno, nie musimy się martwić, który z nich potrzebuje wypełnienia.

Na koniec ponownie wygeneruj strukturę. W tym momencie nie potrzebujemy już postaci w diamentach, więc ustawiamy ją na 0. Wartość x jest tylko sumowana i zwiększana (aby szerokość stosu nadal mogła być obliczona jako ♯(x << 1)). Wartość y jest ustawiona na wyższą z dwóch.

Iteruj po znakach w ciągu

To kolejna przydatna funkcja, którą dodam do biblioteki. Podany ciąg daje leniwą sekwencję zawierającą każdy kod znaku.

                                        ╓───╖
                                        ║ ↯ ║
                                        ╙─┬─╜
                           ┌──────────────┴────────────────┐
                           │      ┌─┐          ╔═══╗ ┌───╖ │
                           │      └─┤     ┌────╢ 0 ╟─┤ ≠ ╟─┴─┐
                    ┌──────┴─┐ ┌┐ ╔═╧═╕ ┌─┴─╖  ╚═══╝ ╘═╤═╝   │
                    │        ├─┤├─╢   ├─┤ ? ╟──────────┤     │
                    │        │ └┘ ╚═╤═╛ ╘═╤═╝ ╔════╗ ┌─┴─╖   │
                    │ ╔══════╧══╗ ┌─┴─╖   │   ║ −1 ╟─┤ ≠ ╟───┘
                    │ ║ 2097151 ║ │ ↯ ║       ╚════╝ ╘═══╝
                    │ ╚═════════╝ ╘═╤═╝
                    │             ┌─┴──╖ ╔════╗
                    └─────────────┤ >> ╟─╢ 21 ║
                                  ╘════╝ ╚════╝

anding ciąg z 2097151 zwraca pierwszy znak. >>ing przez 21 usuwa go. Sprawdzamy zarówno 0, jak i -1 z powodu wyjaśnionego na stronie esolangs ; nie ma to związku z tym wyzwaniem, ale chcę, aby funkcja biblioteki była poprawna.

Przekształć znak w stos diamentów

Ta funkcja przyjmuje pojedynczy znak i zwraca strukturę pionowego stosu reprezentującego ten jeden znak.

                                   ╔════╗
                                   ║ 96 ║  ╓───╖
                                   ╚══╤═╝  ║ ⬖ ║
                        ┌───╖ ┌───╖ ┌─┴─╖  ╙─┬─╜
                    ┌───┤ ɗ ╟─┤ Ḟ ╟─┤ − ║    │
                    │   ╘═╤═╝ ╘═══╝ ╘═╤═╝    │
                    │   ┌─┴─╖         ├──────┘  ┌──┐
                    │   │ ɹ ║         │     ┌───┤  │
                    │   ╘═╤═╝   ┌─────┘     │   │  │
                  ╔═╧═╗ ┌─┴─╖ ┌─┴─╖         │  ┌┴┐ │
                  ║ 1 ╟─┤   ╟─┤ · ╟─────┐ ╔═╧═╕└┬┘ │
                  ╚═══╝ └─┬─╜ ╘═╤═╝   ┌─┴─╢   ├─┘ ┌┴┐
            ┌───────────┐ │     └─┐   │   ╚═╤═╛   └┬┘
          ┌─┴─╖         │ │ ┌───╖ │   └─┐ ╔═╧═╕ ┌──┴─╖ ╔═══╗
    ┌─────┤ · ╟───┐     │ └─┤ ◆ ╟─┘   ┌─┴─╢   ├─┤ << ╟─╢ 1 ║
 ┌──┴─┐   ╘═╤═╝   │     │   ╘═╤═╝     │   ╚═╤═╛ ╘════╝ ╚═╤═╝
 │ ┌──┴─╖ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖   ┌─┴─╖ ┌─┴─╖        ┌─┴─╖
 │ │ >> ╟─┤ ⬗ ╟─╢   ├─╢   ├─┤ ʩ ╟───┤ · ╟─┤ ʑ ╟────────┤ ⸗ ║
 │ ╘══╤═╝ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝   ╘═╤═╝ ╘═╤═╝        ╘═╤═╝
 │  ╔═╧═╗  ┌┴┐    │   ╔═╧═╗   │       └─────┘          ╔═╧═╗
 │  ║ 1 ╟─┐└┬┘    └───╢ 0 ║                            ║ 0 ║
 │  ╚═══╝ ├─┘         ╚═══╝                            ╚═══╝
 └────────┘

Ta funkcja jest interesująca, ponieważ potrzebowaliśmy, aby diamenty były dołączane naprzemiennie do dołu i góry. Oto jak to zrobiłem:

  • Najpierw odejmij 96 (tak 'a'staje się 1), uzyskaj czynniki pierwsze ( powyżej), użyj, ɗaby dodać element 1, jeśli sekwencja jest pusta, a następnie odwróć ( ɹ) kolejność.

  • Zdejmij pierwszy element i zadzwoń, aby uruchomić stos.

  • Teraz użyj, aby wygenerować leniwą sekwencję, która po prostu naprzemiennie zmienia liczby 0 i 1 w nieskończoność.

  • Użyj ʑ(zip) na tym i pozostałych czynnikach głównych. Dla każdego czynnika pierwszego przesuń go w lewo o 1 i or0/1 na niego. Mamy teraz sekwencję, która koduje liczb pierwszych i górnej / dolnej informacji.

  • Na koniec użyj ʩ(złóż w lewo / zagreguj). Wartość początkowa to stos, który wygenerowaliśmy z pierwszego elementu powyżej. Dla każdej wartości ν , wywołaj (dodaj nowy diament) z poprzednim stosem, liczbą pierwszą ( ν >> 1) oraz czy jest to góra czy dół ( ν & 1).

⑨ Program główny

Tutaj wykonujemy główną pracę.

                       ┌─────┐
                       │   ┌─┴─╖
                       │   │ ⬖ ║
               ╔═══╗ ╔═╧═╕ ╘═╤═╝
               ║ 0 ╟─╢   ├───┘
               ╚═╤═╝ ╚═╤═╛ ┌───╖ ┌───╖ ╔═══╗
                 └─┐   └───┤ ɱ ╟─┤ ↯ ╟─╢   ║
       ┌─────────┐ └─────┐ ╘═╤═╝ ╘═══╝ ╚═══╝
       │       ┌─┴─╖     │ ┌─┴─╖
       │   ┌───┤ · ╟───┐ └─┤   ╟─┐
       │   │   ╘═╤═╝   │   └─┬─╜ │
       │ ┌─┴─╖ ╔═╧═╕ ╔═╧═╕ ┌─┴─╖ │
       │ │ ❖ ╟─╢   ├─╢   ├─┤ ʩ ╟─┘
       │ ╘═╤═╝ ╚═╤═╛ ╚═╤═╛ ╘═╤═╝
       └───┘   ╔═╧═╗   │   ┌─┴─╖ ┌─┐
               ║ 0 ╟───┘ ┌─┤ ‹ ╟─┴─┘
               ╚═══╝     │ ╘═══╝
                       ┌─┴─╖ ┌─┐
                     ┌─┤ ‹ ╟─┴─┘
                     │ ╘═══╝
      ╔════╗ ┌───╖ ┌─┴─╖ ┌─┐
      ║ 10 ╟─┤ ʝ ╟─┤ ‹ ╟─┴─┘
      ╚════╝ ╘═╤═╝ ╘═══╝
               │

Najpierw map ( ɱ) nad znakami w ciągu wejściowym ( ) i zamień każdy w stos diamentów za pomocą . Zdejmij pierwszy element i złóż ( ʩ) na pozostałych, aby połączyć je wszystkie ( ). Na koniec rozpakuj strukturę za pomocą, aby dostać się do sekwencji ciągów i połącz je wszystkie ( ʝ) używając 10 (nowego wiersza) jako separatora.

Przykładowe dane wyjściowe

Wejście:

crusaders

Dane wyjściowe (obliczenie zajęło 9 sekund; nie można opublikować tutaj, ponieważ limit rozmiaru).

Timwi
źródło