Właściwie Integer Metagolf

17

tło

Właściwie (następca serialu Poważnie ) jest imperatywnym językiem golfa opartym na stosach, który stworzyłem w listopadzie 2015 roku. Podobnie jak wiele innych języków golfowych, ma komendy jednobajtowe, które wykonują różne funkcje w zależności od zawartości stosu. Jedną z jego specjalizacji jest matematyka - ma wiele różnych poleceń opartych na matematyce. Jednak aby wykonać operacje matematyczne, musisz umieścić (jeden lub więcej) liczb na stosie. Przekazywanie określonej wartości w jak najmniejszej liczbie bajtów jest trudne, ponieważ istnieje wiele różnych opcji. W tym wyzwaniu będziesz robił dokładnie to: reprezentowanie liczb (w szczególności liczb całkowitych) w rzeczywistości W rzeczywistości możliwie jak najmniej bajtów.

Wyzwanie

Biorąc pod uwagę liczbę całkowitą Njako dane wejściowe, wyjście jest poprawne Właściwie kod, który powoduje Nwypchnięcie na stos.

  • Dane wejściowe będą w zakresie 32-bitowej liczby całkowitej ze znakiem z dopełnieniem dwóch (tj. Liczb całkowitych z zakresu włącznie [-2147483648, 2147483647]).
  • Wynik musi być liczbą całkowitą (nie liczbą zmiennoprzecinkową, łańcuchem, listą lub funkcją) i musi znajdować się na szczycie stosu.
  • Nie możesz przyjmować żadnych założeń dotyczących zawartości stosu (np. Czy jest on pusty). Wszelkie istniejące wartości na stosie nie mogą być modyfikowane ani zmieniane.
  • Najnowsze zatwierdzenie Właściwie w chwili, gdy piszę to wyzwanie użyć . Jeśli wprowadzę poprawki błędów lub ulepszenia wydajności (lub inne niewielkie zmiany, które nie usuwają ani nie zmieniają funkcjonalności dozwolonych poleceń), zaktualizuję tę wersję.
  • Twoje rozwiązanie musi być co najmniej tak samo proste, jak rozwiązanie trywialne (prepend : wejściem, aby utworzyć literał liczbowy).
  • Twój wynik będzie sumą długości trywialnych rozwiązań minus suma długości wyjść dla wyboru 1000 32-bitowych liczb całkowitych ze znakiem dopełniania używanych do punktacji, które można znaleźć poniżej. Zastrzegam sobie prawo do zmiany liczb całkowitych punktacji w dowolnym momencie, jeśli zajdzie taka potrzeba (np. Optymalizacja dla przypadków testowych lub przypadki testowe nie są wystarczająco dokładne).
  • Rozwiązania muszą wygenerować prawidłową odpowiedź w ciągu 30 sekund dla każdego wejścia. Odmierzanie czasu będzie wykonywane w standardowym wolnym obszarze roboczym Cloud9 .

Polecenia

Dla uproszczenia można użyć tylko 141 z (obecnie) 208 poleceń i usunięto wiele przeciążeń tych 141, które nie są związane z łamaniem liczb. Oto lista dozwolonych poleceń (format to <hex code> (<symbol>): <descriptions of functions based on stack values and types>:

0B (♂): take the next command and map it over the top of the stack (for example, ♂A is equivalent to `A`M)
1F (▼): pop a,b: push b//gcd(a,b),a//gcd(a,b); pop [a]: push [x//gcd([a]) for x in [a]]
20 ( ): push the # of elements on the stack (push len(stack))
21 (!): pop a: push a! (factorial(a))
22 ("): string literal, reads until next " and pushes value onto stack. An implied " is present at EOF if needed.
23 (#): pop a: push list(a)
25 (%): pop a,b: push a%b
26 (&): pop a,b: push a & b (bitwise AND)
27 ('): pushes next character onto stack as character literal (length-1 string)
28 ((): rotates stack right by 1
29 ()): rotates stack left by 1
2A (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)])) (shorter is padded with 0s)
2B (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
2D (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
2F (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
30 (0): push 0
31 (1): push 1
32 (2): push 2
33 (3): push 3
34 (4): push 4
35 (5): push 5
36 (6): push 6
37 (7): push 7
38 (8): push 8
39 (9): push 9
3A (:): numeric literal delimiter: pushes the longest string of characters in '0123456789+-.ij' as a numeric
3B (;): pop a: push a,a (duplicates top element)
3C (<): pop a,b: push 1 if a<b else 0
3D (=): pop a,b: push 1 if a==b else 0
3E (>): pop a,b: push 1 if a>b else 0
40 (@): pop a,b: push a,b (rotate top 2 elements)
41 (A): pop a: push abs(a)
43 (C): pop a: push cos(a)
44 (D): pop a: push a-1; pop [a]: push stddev([a])
45 (E): pop a: push erf(a); pop [a],b: push [a][b] (bth item in [a])
46 (F): pop a: push Fib(a) (Fib(0)=0, Fib(1)=Fib(2)=1); pop [a]: push a[0]
48 (H): pop [a],b: push [a][:b]
49 (I): pop a,b,c: push b if a is truthy, else push c
4B (K): pop a: push ceil(a)
4C (L): pop a: push floor(a)
4D (M): pop f,[a], execute f for each element in [a], using the element as a temporary stack, push [a] (similar to map(f,[a])); pop [a]: push max([a])
4E (N): pop [a]: push a[-1]
50 (P): pop a: push the a-th prime (zero-indexed)
52 (R): pop f,[a]: call f, using [a] as a temporary stack, push [a] (similar to reduce(f,[a])); pop [a]: push [a][::-1] (reverse); pop a: push [1,2,...,a] (range(1,a+1))
53 (S): pop a: push sin(a); pop [a]: push sorted(a)
54 (T): pop a: push tan(a); pop [a],b,c: set [a][b] to c, push [a]
55 (U): pop [a],[b]: push union of [a] and [b]
57 (W): loop delimiter: peek top of stack, repeat code in loop while a evaluates to true
58 (X): pop a: discard
59 (Y): pop a: push !bool(a) (logical negate, opposite of b)
5A (Z): pop [a],[b]: push zip([a],[b]); pop a, zip the next a lists
5B ([): begin list literal, values are delimited by commas (,)
5C (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
5D (]): end list literal
5E (^): pop a,b: push a XOR b
5F (_): pop a: push ln(a)
60 (`): function literal delimiter, pushes function whose body contains all of the commands until the next `. An implied ` is present at EOF if needed.
61 (a): invert the stack ([a,b,c,d] -> [d,c,b,a])
62 (b): pop a: push 0 if a==0 else 1; pop "a" or [a]: push 0 if len(a)==0 else 1; pop f: push 0 if len(f)==0 else 1
63 (c): pop a: push character at ordinal a%256; pop [a],b: push [a].count(b)
64 (d): pop [a]: dequeue b from [a], push [a],b
65 (e): pop a: push exp(a)
66 (f): pop a: push the Fibonacci index of a if a is a Fibonacci number, else -1
67 (g): pop a,b: push gcd(a,b); pop [a]: push gcd([a])
68 (h): pop a,b: push sqrt(a*a+b*b) (Euclidean norm)
69 (i): pop [a]: push each element from [a], starting from end (flatten)
6B (k): pop all elements from stack, convert to list (in the order they were on the stack, starting from the top), and push
6C (l): pop [a]: push len([a])
6D (m): pop a: push int(a),frac(a) (modf(a)); pop [a]: push min([a])
6E (n): pop a,b: push a b times
6F (o): pop [a],b: push b to [a], push [a]
70 (p): pop a: push 1 if a is prime else 0; pop [a]: pop b from [a], push [a],b
71 (q): pop [a],b: enqueue b in [a], push [a]
72 (r): pop a: push [0,1,...,a-1] (range(0,a))
75 (u): pop a: push a+1
77 (w): pop a: push the full positive prime factorization of |a| (18 -> [[2,1],[3,2]], -5 -> [[5,1]])
78 (x): pop a,b: push [a,b) (range(a,b)); pop [a]: push range(*a)
79 (y): pop a: push the positive prime factors of |a| (18 -> [2,3], -5 -> [5])
7B ({): pop a: rotate stack right a times
7C (|): pop a,b: push a | b (bitwise OR)
7D (}): pop a: rotate stack left a times
7E (~): pop a: push ~a (unary bitwise negate)
80 (Ç): pop a,b: push a+bi; pop [a]: pop pairs of real numerics b,c from [a] and push b+ci (appending 0 to [a] if len([a]) is odd)
83 (â): pop a: push asin(a)
84 (ä): pop a: push acos(a)
85 (à): pop a: push atan(a)
86 (å): pop a,b: push atan2(a,b)
87 (ç): pop a: push asinh(a)
88 (ê): pop a: push acosh(a)
89 (ë): pop a: push atanh(a)
8B (ï): push i, the imaginary unit (sqrt(-1) or 0+1i)
8C (î): pop a, push 0+ai; pop [a], push [a] with every element multiplied by i
8D (ì): pop a: push 1/a
8E (Ä): pop a: push sinh(a)
8F (Å): pop a: push cosh(a)
90 (É): pop a: push tanh(a)
91 (æ): pop [a]: push mean([a])
9A (Ü): pop [a]: push mode([a])
9B (¢): pop a,b: push abs(a)*sgn(b)
9D (¥): pop [a],[b]: push the result of pairwise addition of [a] and [b], padding the shorter with 0s
9E (₧): pop z: push phase(z)
A0 (á): pop z: push the complex conjugate of z
A1 (í): pop [a],b: push [a].index(b) (0-based, -1 if not found)
A7 (º): pop a: push degrees(a)
A8 (¿): pop a,b: push int(a,b) (interpret a as a base-b int)
A9 (⌐): pop a: push a+2
AA (¬): pop a: push a-2
AB (½): pop a: push a/2 (float division)
AC (¼): pop a: push a/4 (float division)
AD (¡): pop a,b: push a string representing a in base b
B0 (░): pop [a],[b]: push [[b][i] if [a][i] for i in len(b)], pads [a] with 0s if necessary
B1 (▒): pop a: push totient(a) (# of integers <= a that are coprime with a)
B2 (▓): pop a: push pi(a) (# of primes <= a)
B3 (│): duplicate stack ([a,b,c] => [a,b,c,a,b,c])
B4 (┤): pop a,b: push 1 if a and b are coprime else 0
B9 (╣): pop a: push the ath row in Pascal's triangle
C5 (┼): duplicate each element on stack ([a,b,c] => [a,a,b,b,c,c])
C6 (╞): pop a: make a total copies of each element on stack (3 [a,b,c] -> [a,a,a,b,b,b,c,c,c])
C7 (╟): pop a: pop a elements and push a list containing those elements in their original order
CB (╦): push pi
CC (╠): push e
D1 (╤): pop a: push 10**a
D2 (╥): pop a: push log(a) (log base 10)
D3 (╙): pop a: push 2**a
D4 (╘): pop a: push lg(a) (log base 2)
D5 (╒): push ln(2)
DB (█): pop a,b: push C(a,b) (aCb)
DC (▄): pop a,b: push P(a,b) (aPb)
E2 (Γ): pop a: push Gamma(a)
E3 (π): pop [a]: push product([a])
E4 (Σ): pop [a]: push sum([a])
E7 (τ): pop a: push 2*a
ED (φ): push phi (golden ratio)
F1 (±): pop a: push -a (unary negate)
F2 (≥): pop a,b: push a>=b
F3 (≤): pop a,b: push a<=b
F7 (≈): pop a: push int(a)
F8 (°): pop a: push radians(a)
FB (√): pop a: push sqrt(a)
FC (ⁿ): pop a,b: push pow(a,b)
FD (²): pop a: push a*a

[a] refers to an iterable (list, string, etc.), "a" refers to a string, f refers to a function, and a (and b, and c, and so on) refers to a numeric (or any data type, if the command is type-agnostic).

Prawdopodobnie wiele z tych poleceń nie będzie używanych, ale zamieściłem je na wypadek, gdyby były przydatne.

Punktacja

Oto liczby całkowite, które zostaną użyte do oceny:

-2124910654
-2117700574
-2098186988
-2095671996
-2083075613
-2058271687
-2052250777
-2024215903
-2019485642
-2016095616
-2009838326
-2009173317
-2007673992
-2000014444
-1999825668
-1992515610
-1989566707
-1975506037
-1955473208
-1950731112
-1949886423
-1920624450
-1918465596
-1916287469
-1905036556
-1903956118
-1888944417
-1865221863
-1856600057
-1842797147
-1835637734
-1812631357
-1805740096
-1798015647
-1726688233
-1723609647
-1713776890
-1700307138
-1687644479
-1645515069
-1617635994
-1610444000
-1579053372
-1556891649
-1549652116
-1537732956
-1535180388
-1527162056
-1524851611
-1524658412
-1523244369
-1521379172
-1520191198
-1519035741
-1516978241
-1508892332
-1489938422
-1482102944
-1481823232
-1470621147
-1469145091
-1446844485
-1441790509
-1437843276
-1435359182
-1434186947
-1429816311
-1429393781
-1419752032
-1400387846
-1385152926
-1372620863
-1369257355
-1361933674
-1360480816
-1334846204
-1323741718
-1323660173
-1312800992
-1308824840
-1304658551
-1287829999
-1283767920
-1276288210
-1264275838
-1263965596
-1262866901
-1255421887
-1251428680
-1244825786
-1243200329
-1235305532
-1233977691
-1220537074
-1214100716
-1199414474
-1190725823
-1190401800
-1178717689
-1172378149
-1147869245
-1142875190
-1138538768
-1137864183
-1124917489
-1102987222
-1095920186
-1083001017
-1080902655
-1047122002
-1031842676
-1029877334
-1020849489
-1001684838
-998419619
-990915088
-985235989
-982515261
-979074894
-974195629
-973832940
-965324937
-944246431
-938387588
-933873331
-932692878
-928039285
-927947459
-914008773
-907981688
-906376330
-903502449
-898112547
-887444438
-862658502
-843628573
-822463032
-786051095
-776932426
-776033951
-752042328
-746532472
-743149468
-740225710
-734414418
-725435852
-708101516
-699674783
-694869277
-693246525
-690571518
-689249770
-688581912
-686864294
-681445866
-647992869
-641101583
-631409299
-624686189
-613079884
-593711206
-591688546
-591331185
-574790069
-573024823
-565387051
-565137163
-556338668
-556291492
-541411509
-538932064
-500479857
-482419890
-468050561
-424532545
-420534171
-408741873
-406973874
-387664799
-382084509
-367095703
-352332569
-352195997
-346430007
-324596389
-320119776
-306594578
-305952425
-283718911
-267302378
-243302738
-242955859
-232180029
-225394407
-217418127
-212286453
-208344820
-191300139
-186177744
-175765723
-161763935
-157025501
-140389149
-132298608
-126175769
-70566352
-68748576
-53985905
-52674668
-50228620
-39678495
-19825663
-8349922
-8186722
-8125700
-8073135
-8043230
-7994382
-7874433
-7863624
-7784916
-7782477
-7696343
-7607278
-7531250
-7388060
-7368780
-7367625
-7353084
-7334489
-7281141
-7267149
-7140057
-7119066
-7010389
-6992089
-6975258
-6863360
-6784772
-6741079
-6585985
-6550401
-6520011
-6495144
-6459702
-6294273
-6178342
-6169344
-6139663
-6090928
-6022637
-5992707
-5971334
-5925304
-5880940
-5873707
-5807953
-5703992
-5692895
-5535131
-5488812
-5468330
-5404148
-5290247
-5274221
-5264144
-5234715
-5224048
-5179837
-5084014
-5043990
-5028537
-5011679
-4998333
-4922901
-4880159
-4874060
-4787390
-4749096
-4736217
-4502308
-4480611
-4424319
-4363262
-4349743
-4290050
-4240069
-4239657
-4174072
-4093051
-4045363
-4037689
-4033352
-3839265
-3766343
-3716899
-3680075
-3679053
-3581776
-3539227
-3461158
-3282526
-3205947
-3183427
-3169708
-3166430
-3089822
-3061531
-2947574
-2930733
-2919246
-2872882
-2830770
-2739228
-2713826
-2634018
-2613990
-2525529
-2439507
-2432921
-2376201
-2335005
-2307524
-2265548
-2176176
-2123133
-2108773
-2105934
-2075032
-2073940
-2045837
-2045648
-1978182
-1945769
-1935486
-1881608
-1654650
-1602520
-1506746
-1505294
-1475309
-1457605
-1327259
-1312217
-1178723
-1027439
-880781
-833776
-666675
-643098
-593446
-468772
-450369
-443225
-418164
-402004
-319964
-307400
-279414
-190199
-176644
-66862
-32745
-32686
-32352
-32261
-32035
-31928
-31414
-31308
-30925
-30411
-29503
-29182
-28573
-28500
-28093
-27743
-27716
-27351
-27201
-26834
-25946
-25019
-24469
-24341
-24292
-24151
-23732
-22769
-22242
-22002
-20863
-20762
-20644
-20189
-20009
-19142
-19036
-18980
-18616
-18196
-18123
-17942
-17915
-17601
-17494
-16669
-16417
-16317
-15051
-14796
-14742
-14600
-14443
-14159
-14046
-13860
-13804
-13745
-13634
-13498
-13497
-12688
-12471
-12222
-11993
-11467
-11332
-10783
-10250
-10114
-10089
-9930
-9434
-9336
-9128
-9109
-8508
-8460
-8198
-8045
-7850
-7342
-7229
-6762
-6302
-6245
-6171
-5957
-5842
-4906
-4904
-4630
-4613
-4567
-4427
-4091
-4084
-3756
-3665
-3367
-3186
-2922
-2372
-2331
-1936
-1683
-1350
-1002
-719
-152
-128
-127
-124
-122
-121
-119
-116
-113
-112
-111
-107
-104
-102
-101
-100
-95
-94
-91
-90
-87
-81
-80
-79
-78
-73
-72
-69
-68
-66
-65
-63
-57
-54
-52
-51
-48
-47
-46
-45
-43
-41
-37
-33
-31
-30
-27
-25
-21
-18
-15
-12
-8
-1
0
1
3
4
5
6
11
14
17
23
25
26
27
28
29
31
32
39
41
46
49
51
52
56
58
61
64
66
67
70
74
79
80
86
88
89
92
93
99
102
104
109
113
117
120
122
123
127
695
912
1792
2857
3150
3184
4060
4626
5671
6412
6827
7999
8017
8646
8798
9703
9837
10049
10442
10912
11400
11430
11436
11551
11937
12480
13258
13469
13689
13963
13982
14019
14152
14259
14346
15416
15613
15954
16241
16814
16844
17564
17702
17751
18537
18763
19890
21216
22238
22548
23243
23383
23386
23407
23940
24076
24796
24870
24898
24967
25139
25176
25699
26167
26536
26614
27008
27087
27142
27356
27458
27800
27827
27924
28595
29053
29229
29884
29900
30460
30556
30701
30815
30995
31613
31761
31772
32099
32308
32674
75627
80472
103073
110477
115718
172418
212268
242652
396135
442591
467087
496849
675960
759343
846297
881562
1003458
1153900
1156733
1164679
1208265
1318372
1363958
1411655
1522329
1559609
1677118
1693658
1703597
1811223
1831642
1838628
1884144
1931545
2085504
2168156
2170263
2239585
2308894
2329235
2364957
2432335
2435551
2596936
2684907
2691011
2705195
2738057
2851897
2925289
2995414
3051534
3216094
3267022
3271559
3338856
3440797
3638325
3651369
3718696
3724814
3811069
3854697
3866969
3893228
3963455
3984546
4098376
4100957
4128113
4200719
4256344
4286332
4306356
4316314
4438803
4458063
4461638
4552228
4563790
4584831
4607992
4884455
4907501
5045419
5066844
5150624
5157161
5190669
5314703
5337397
5434807
5440092
5502665
5523089
5547122
5566200
5582936
5634068
5690330
5776984
5778441
5818505
5826687
5827184
5885735
6010506
6084254
6131498
6138324
6250773
6292801
6306275
6315242
6331640
6484374
6502969
6545970
6666951
6690905
6763576
6766086
6895048
6912227
6929081
6941390
6978168
7045672
7085246
7193307
7197398
7270237
7276767
7295790
7375488
7472098
7687424
7840758
7880957
7904499
7948678
7974126
8015691
8037685
8112955
8131380
8140556
8142384
8220436
8308817
8331317
22581970
45809129
48103779
78212045
79674901
97299830
110308649
131744428
136663461
138485719
139842794
152061792
152685704
153070991
156228213
164884737
174776199
189346581
193148547
208582124
223891881
227308187
237373798
241214067
242476929
245495851
260606593
275202667
285717038
317009689
322759532
325369206
339724742
340122632
345010859
352375176
355826263
359695034
366118516
370008270
382712922
386379440
401153345
404986391
426084981
442843409
473909474
475192613
492302667
494747879
506279889
509813998
537558350
548423414
548467404
566383324
574188786
574792333
591678147
596558084
597423476
602432742
603067874
629552047
630893263
635249783
644959276
650710927
664859367
669433203
684329599
699991513
714451929
723556530
739294558
750895264
757618344
781123405
796973385
801637715
804776709
829003666
829219068
840167037
854882202
860066192
864304878
864808449
867107161
871871263
880591851
883020336
883178082
920223781
936008673
939417822
956776353
958281059
962183717
964059257
967860573
974322643
974999286
980009921
1032949015
1044249483
1064892676
1075628270
1080848022
1085571657
1173635593
1174809080
1176744978
1209783795
1212074975
1252323507
1254757790
1301450562
1302240953
1314501797
1315121266
1339304157
1364304289
1376260506
1383883477
1395158643
1411117754
1440755058
1448365702
1466814914
1468433821
1490105126
1493912601
1495600372
1509536621
1511014977
1545693948
1548924199
1566583103
1569747154
1574097219
1597784674
1610710480
1618324005
1646105187
1649417465
1655649169
1660619384
1668826887
1671093718
1672456990
1673477565
1678638502
1682302139
1682515769
1687920300
1690062315
1706031388
1713660819
1772170709
1778416812
1833443690
1861312062
1876004501
1876358085
1882435551
1916050713
1944906037
1950207172
1951593247
1973638546
1976288281
1994977271
2020053060
2025281195
2029716419
2033980539
2052482076
2058251762
2069273004
2073978021
2111013213
2119886932
2134609957
2140349794
2143934987

Oto program w języku Python 3, którego można użyć do weryfikacji i oceny zgłoszenia:

#!/usr/bin/env python3

import shlex
import os
import sys
import subprocess

try:
    from seriously import Seriously
except:
    print("Unable to load Seriously. Run 'pip3 install seriously' to install it.")
    exit()

if len(sys.argv) < 2:
    print("Usage: python3 {} 'command_to_call_your_program'".format(sys.argv[0]))
    exit()

sys.stdin = open(os.devnull, 'r')

with open('nums.txt') as f:
    nums = [int(x) for x in f]

total = 0

for num in nums:
    p = subprocess.Popen(shlex.split(sys.argv[1]), stdin=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True)
    try:
        out = p.communicate(str(num), timeout=30)[0].strip()
    except subprocess.TimeoutExpired:
        print("Program failed to finish within 30 seconds for {}".format(num))
        exit()
    val = Seriously().eval(out)[0]
    if not len(out) <= len(':'+str(num)):
        print("Failed to do at least as well as naive on {} ({})".format(num, out))
        exit()
    elif val != num or not isinstance(val, int):
        print("Incorrect output: {} instead of {}".format(val, num))
        exit()
    else:
        print("{}: {} ({})".format(num, out, len(out)))
        total += len(out)

print("Total:", total)
Mego
źródło
Czy możemy korzystać z trwałych danych? (Jak do przechowywania wielu liczb pierwszych lub liczb Fibonacciego)
Niebieski
„Twoje rozwiązanie musi być lepsze niż rozwiązanie trywialne, chyba że rozwiązanie trywialne jest optymalne dla danej wartości”. dla każdego wkładu? więc jeśli mój algorytm radzi sobie lepiej niż trywialne rozwiązanie w 99% przypadków, pozostałe 1% dyskwalifikuje mnie, jeśli któryś z nich nie jest optymalny?
Sparr
@Blue To jest do przyjęcia.
Mego
1
@Sparr Oznacza to, że nie można po prostu wypisać trywialnego rozwiązania, jeśli istnieje lepsze rozwiązanie.
Mego
1
@ven To normalne. Nazwa tego języka to Poważnie. W tym wyzwaniu mamy do czynienia konkretnie z Seriously v2, który nazywa się Właściwie.
Mego

Odpowiedzi:

5

Python 3, 51 52 57 bajtów zapisanych

Ten brutalny program przedziera się przez znaczną liczbę 1-5 znaków, używając ograniczonego zestawu 54 56 instrukcji i dużo czyszczenia w zależności od stanu stosu przed dodaniem każdej nowej instrukcji. Uruchomienie mojego laptopa zajmuje około minuty. 6 znaków zajmie godziny.

#!/usr/bin/env python3
# -*- coding: cp437 -*-

import os
import sys
import json
import math
import time
import random
import timeit

try:
    from seriously import Seriously,chr_cp437,ord_cp437
except:
    print("Unable to load Seriously. Run 'pip3 install seriously' to install it.")
    exit()

MAXLEN=5
MAX=2**31


future_alphabet=[

    chr_cp437(0x4D), #  (M): pop f,[a], execute f for each element in [a], using the element as a temporary stack, push [a] (similar to map(f,[a])); pop [a]: push max([a])
    chr_cp437(0x52), #  (R): pop f,[a]: call f, using [a] as a temporary stack, push [a] (similar to reduce(f,[a])); pop [a]: push [a][::-1] (reverse); pop a: push [1,2,...,a] (range(1,a+1))
    chr_cp437(0x57), #  (W): loop delimiter: peek top of stack, repeat code in loop while a evaluates to true
    chr_cp437(0x60), #  (`): function literal delimiter, pushes function whose body contains all of the commands until the next `. An implied ` is present at EOF if needed.

]

def next_instruction(program,stack):
    plen = len(program)
    slen = len(stack)
    if plen>0 and program[-1]==chr_cp437(0x0B): # introspect the list on top of the stack
        maybes = set(next_instruction(program[:-1],[stack[0][0]]))
        # print(maybes)
        for i in stack[0][1:]:
            maybes = maybes & set(next_instruction(program[:-1],[i]))
            # print(maybes)
        maybes.discard(chr_cp437(0x72)) # no ranges of lists
        maybes.discard(chr_cp437(0xB9)) # no pascal rows of lists
        return list(maybes)

    candidates = []

    if plen==MAXLEN-1 and slen>1:
        if any(isinstance(x,list) for x in stack):
            return [] # lost cause
        if slen==2 and isinstance( stack[0], int ) and isinstance( stack[1], int ):
            candidates = candidates + [
                chr_cp437(0x2A), #  (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)])) (shorter is padded with 0s)
                chr_cp437(0x2B), #  (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
                chr_cp437(0x2D), #  (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
                chr_cp437(0x2F), #  (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
                chr_cp437(0x5C), #  (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
            ]
            if stack[0]>1 and stack[0]<int(math.pow(MAX,1.0/3))+1 and stack[1]>2 and stack[1]<int(math.log(MAX)/math.log(3))+1:
                candidates.append(chr_cp437(0xFC))  #  (ⁿ): pop a,b: push pow(a,b)
            if stack[0]>2 and stack[0]<1000 and stack[1]>2 and stack[1]<stack[0]:
                candidates = candidates + [
                    chr_cp437(0xDB), #  (█): pop a,b: push C(a,b) (aCb)
                    chr_cp437(0xDC) #  (▄): pop a,b: push P(a,b) (aPb)
                ]
        return candidates

    if plen==MAXLEN-1 and slen==1 and isinstance(stack[0],list):
        candidates = candidates + [
            chr_cp437(0xE3), #  (π): pop [a]: push product([a])
            chr_cp437(0xE4)  #  (Σ): pop [a]: push sum([a])
        ]
        return candidates

    candidates = candidates + [
        chr_cp437(0x30), #  (0): push 0
        chr_cp437(0x31), #  (1): push 1
        chr_cp437(0x32), #  (2): push 2
        chr_cp437(0x33), #  (3): push 3
        chr_cp437(0x34), #  (4): push 4
        chr_cp437(0x35), #  (5): push 5
        chr_cp437(0x36), #  (6): push 6
        chr_cp437(0x37), #  (7): push 7
        chr_cp437(0x38), #  (8): push 8
        chr_cp437(0x39)  #  (9): push 9
    ]

    if plen==0 or (plen>0 and program[-1]!=":"):
        candidates.append(chr_cp437(0x3A)) #  (:): numeric literal delimiter: pushes the longest string of characters in '0123456789+-.ij' as a numeric

    # if plen>0 and program[-1]==":":
    #     candidates.append(chr_cp437(0x2D)) # negative literal coming

    if slen>0:
        candidates.append(chr_cp437(0xB3)) #  (│): duplicate stack ([a,b,c] => [a,b,c,a,b,c])

    if slen>0 and isinstance( stack[0], int ):
        candidates = candidates + [
            chr_cp437(0x44), #  (D): pop a: push a-1; pop [a]: push stddev([a])
            chr_cp437(0x54), #  (T): pop a: push tan(a); pop [a],b,c: set [a][b] to c, push [a]
            chr_cp437(0x65), #  (e): pop a: push exp(a)
            chr_cp437(0x75), #  (u): pop a: push a+1
            chr_cp437(0xA9), #  (⌐): pop a: push a+2
            chr_cp437(0xAA), #  (¬): pop a: push a-2
            chr_cp437(0xAB), #  (½): pop a: push a/2 (float division)
            chr_cp437(0xAC), #  (¼): pop a: push a/4 (float division)
            chr_cp437(0xE7), #  (τ): pop a: push 2*a
            chr_cp437(0xF1), #  (±): pop a: push -a (unary negate)
            chr_cp437(0xFD), #  (²): pop a: push a*a
            chr_cp437(0x7E)  #  (~): pop a: push ~a (unary bitwise negate)
        ]
        candidates.append(chr_cp437(0x3B)) #  (;): pop a: push a,a (duplicates top element)
        if stack[0]>=0:
            if stack[0]<13:
                candidates.append(chr_cp437(0x21)) #  (!): pop a: push a! (factorial(a))
                candidates.append(chr_cp437(0xD1)) #  (╤): pop a: push 10**a
            if stack[0]<32:
                candidates.append(chr_cp437(0xD3)) #  (╙): pop a: push 2**a
                candidates.append(chr_cp437(0xB9)) #  (╣): pop a: push the ath row in Pascal's triangle
            if stack[0]<100:
                candidates.append(chr_cp437(0x46)) #  (F): pop a: push Fib(a) (Fib(0)=0, Fib(1)=Fib(2)=1); pop [a]: push a[0]
                candidates.append(chr_cp437(0x50)) #  (P): pop a: push the a-th prime (zero-indexed)
            if stack[0]<500 and plen<MAXLEN-1:
                candidates.append(chr_cp437(0x72)) #  (r): pop a: push [0,1,...,a-1] (range(0,a))


    if slen>0 and isinstance( stack[0], float ):
        candidates = candidates + [
            chr_cp437(0x4B), #  (K): pop a: push ceil(a)
            chr_cp437(0x4C)  #  (L): pop a: push floor(a)
        ]

    if slen>0 and isinstance( stack[0], list ) and len(stack[0])>0:
        candidates = candidates + [
            chr_cp437(0xE3), #  (π): pop [a]: push product([a])
            chr_cp437(0xE4)  #  (Σ): pop [a]: push sum([a])
        ]
        candidates.append(chr_cp437(0x69)) #  (i): pop [a]: push each element from [a], starting from end (flatten)
        if plen<MAXLEN-2:
            candidates.append(chr_cp437(0x0B)) #  (♂): take the next command and map it over the top of the stack (for example, ♂A is equivalent to `A`M)

    if slen>1:
        candidates.append(chr_cp437(0x6B)) #  (k): pop all elements from stack, convert to list (in the order they were on the stack, starting from the top), and push

    if slen>1 and isinstance( stack[0], int ):
        candidates = candidates + [
            chr_cp437(0x61), #  (a): invert the stack ([a,b,c,d] -> [d,c,b,a])
            chr_cp437(0xC5), #  (┼): duplicate each element on stack ([a,b,c] => [a,a,b,b,c,c])
            chr_cp437(0xC7)  #  (╟): pop a: pop a elements and push a list containing those elements in their original order
        ]
        if stack[0]<100:
            candidates.append(chr_cp437(0xC6)) #  (╞): pop a: make a total copies of each element on stack (3 [a,b,c] -> [a,a,a,b,b,b,c,c,c])     

    if slen>1 and isinstance( stack[0], int ) and isinstance( stack[1], int ):
        candidates = candidates + [
            chr_cp437(0x2A), #  (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)])) (shorter is padded with 0s)
            chr_cp437(0x2B), #  (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
            chr_cp437(0x2D), #  (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
            chr_cp437(0x2F), #  (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
            chr_cp437(0x5C), #  (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
        ]
        if stack[0]>1 and stack[0]<int(math.pow(MAX,1.0/3))+1 and stack[1]>2 and stack[1]<int(math.log(MAX)/math.log(3))+1:
            candidates.append(chr_cp437(0xFC))  #  (ⁿ): pop a,b: push pow(a,b)
        if stack[0]>2 and stack[0]<1000 and stack[1]>2 and stack[1]<stack[0]:
            candidates = candidates + [
                chr_cp437(0xDB), #  (█): pop a,b: push C(a,b) (aCb)
                chr_cp437(0xDC) #  (▄): pop a,b: push P(a,b) (aPb)
            ]
        if stack[1]-stack[0]>0 and stack[1]-stack[0]<500:
            candidates.append(chr_cp437(0x78)) #  (x): pop a,b: push [a,b) (range(a,b)); pop [a]: push range(*a)

    if slen>1 and (isinstance( stack[0], list ) or isinstance( stack[1], list )):
        candidates = candidates + [
            chr_cp437(0x2A), #  (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)])) (shorter is padded with 0s)
            chr_cp437(0x2B), #  (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
            chr_cp437(0x2D), #  (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
            chr_cp437(0x2F), #  (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
            chr_cp437(0x5C), #  (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
        ]

    return candidates

# p = "8"+chr_cp437(0x72)+chr_cp437(0x0B)
# res = Seriously().eval(p)
# print(p)
# print(res)
# print(next_instruction(p,res))
# sys.exit()

programs = [[['',None]]]
best = {}

def l(n,force_colon=False):
    if force_colon:
        return ':'+str(n)
    if n>=0 and n<10:
        return str(n)
    elif n<0 and n>-10:
        return str(-n)+'±'
    return ':'+str(n)

def cand(n,rep):
    # print(n,rep,len(rep),l(n),len(l(n)),best[n] if n in best else "")
    if n<=MAX and n>=-MAX and (len(rep)==1 or len(rep)<len(l(n))) and (n not in best or len(rep)<len(best[n])):
        best[n] = rep
        # print("woot")
        return True
    return False

for proglen in range(0,MAXLEN+1):
    print(proglen,"/",MAXLEN)
    if proglen<MAXLEN:
        programs.append([])
    first = ""
    for p in programs[proglen]:
        try:
            if first!=p[0][0]:
                first=p[0][0]
                print(" ",p[0][0],"/",9)
        except:
            pass
        if chr_cp437(0x7E) in p[0]:
            print(p[0])
        now = time.clock()
        try:
            res = Seriously().eval(p[0])
            elapsed = time.clock()-now
            if elapsed>0.0005:
                timed = timeit.timeit('Seriously().eval("'+str(p[0].encode('unicode_escape'))+'")','from seriously import Seriously',number=1000)
                if elapsed>0.01:
                    print("SLOW:")
                    print(p[0])
                    print(res)
                    print(elapsed)
            if chr_cp437(0x7E) in p[0]:
                print(res)
            if len(res)==1 and isinstance( res[0], int ):
                # print("cand",res[0],p[0])
                cand(res[0],p[0])
            p[1] = res
            if proglen<MAXLEN:
                # bail out if the stack is too complex to collapse in time
                if proglen==MAXLEN-1:
                    if len(res)>0 and isinstance( res[0], list ) and not isinstance( res[0][0], int ):
                        continue
                    if len(res)>1 and isinstance( res[0], list ):
                        continue
                    if len(res)>2:
                        continue
                for c in next_instruction(p[0],res):
                    programs[proglen+1].append([p[0]+c,None])
        except:
            pass

# print(programs)

def best_or_l(n,force_colon=False):
    if n in best:
        return best[n]
    if n<0 and -n in best:
        return best[-n]+chr_cp437(0xF1)
    return l(n,force_colon)

# for key,value in sorted(best.items()):
#     # if random.random()<0.01:
#     print(key,value)

score = 0
for i in [-2124910654, -2117700574, -2098186988, -2095671996, -2083075613, -2058271687, -2052250777, -2024215903, -2019485642, -2016095616, -2009838326, -2009173317, -2007673992, -2000014444, -1999825668, -1992515610, -1989566707, -1975506037, -1955473208, -1950731112, -1949886423, -1920624450, -1918465596, -1916287469, -1905036556, -1903956118, -1888944417, -1865221863, -1856600057, -1842797147, -1835637734, -1812631357, -1805740096, -1798015647, -1726688233, -1723609647, -1713776890, -1700307138, -1687644479, -1645515069, -1617635994, -1610444000, -1579053372, -1556891649, -1549652116, -1537732956, -1535180388, -1527162056, -1524851611, -1524658412, -1523244369, -1521379172, -1520191198, -1519035741, -1516978241, -1508892332, -1489938422, -1482102944, -1481823232, -1470621147, -1469145091, -1446844485, -1441790509, -1437843276, -1435359182, -1434186947, -1429816311, -1429393781, -1419752032, -1400387846, -1385152926, -1372620863, -1369257355, -1361933674, -1360480816, -1334846204, -1323741718, -1323660173, -1312800992, -1308824840, -1304658551, -1287829999, -1283767920, -1276288210, -1264275838, -1263965596, -1262866901, -1255421887, -1251428680, -1244825786, -1243200329, -1235305532, -1233977691, -1220537074, -1214100716, -1199414474, -1190725823, -1190401800, -1178717689, -1172378149, -1147869245, -1142875190, -1138538768, -1137864183, -1124917489, -1102987222, -1095920186, -1083001017, -1080902655, -1047122002, -1031842676, -1029877334, -1020849489, -1001684838, -998419619, -990915088, -985235989, -982515261, -979074894, -974195629, -973832940, -965324937, -944246431, -938387588, -933873331, -932692878, -928039285, -927947459, -914008773, -907981688, -906376330, -903502449, -898112547, -887444438, -862658502, -843628573, -822463032, -786051095, -776932426, -776033951, -752042328, -746532472, -743149468, -740225710, -734414418, -725435852, -708101516, -699674783, -694869277, -693246525, -690571518, -689249770, -688581912, -686864294, -681445866, -647992869, -641101583, -631409299, -624686189, -613079884, -593711206, -591688546, -591331185, -574790069, -573024823, -565387051, -565137163, -556338668, -556291492, -541411509, -538932064, -500479857, -482419890, -468050561, -424532545, -420534171, -408741873, -406973874, -387664799, -382084509, -367095703, -352332569, -352195997, -346430007, -324596389, -320119776, -306594578, -305952425, -283718911, -267302378, -243302738, -242955859, -232180029, -225394407, -217418127, -212286453, -208344820, -191300139, -186177744, -175765723, -161763935, -157025501, -140389149, -132298608, -126175769, -70566352, -68748576, -53985905, -52674668, -50228620, -39678495, -19825663, -8349922, -8186722, -8125700, -8073135, -8043230, -7994382, -7874433, -7863624, -7784916, -7782477, -7696343, -7607278, -7531250, -7388060, -7368780, -7367625, -7353084, -7334489, -7281141, -7267149, -7140057, -7119066, -7010389, -6992089, -6975258, -6863360, -6784772, -6741079, -6585985, -6550401, -6520011, -6495144, -6459702, -6294273, -6178342, -6169344, -6139663, -6090928, -6022637, -5992707, -5971334, -5925304, -5880940, -5873707, -5807953, -5703992, -5692895, -5535131, -5488812, -5468330, -5404148, -5290247, -5274221, -5264144, -5234715, -5224048, -5179837, -5084014, -5043990, -5028537, -5011679, -4998333, -4922901, -4880159, -4874060, -4787390, -4749096, -4736217, -4502308, -4480611, -4424319, -4363262, -4349743, -4290050, -4240069, -4239657, -4174072, -4093051, -4045363, -4037689, -4033352, -3839265, -3766343, -3716899, -3680075, -3679053, -3581776, -3539227, -3461158, -3282526, -3205947, -3183427, -3169708, -3166430, -3089822, -3061531, -2947574, -2930733, -2919246, -2872882, -2830770, -2739228, -2713826, -2634018, -2613990, -2525529, -2439507, -2432921, -2376201, -2335005, -2307524, -2265548, -2176176, -2123133, -2108773, -2105934, -2075032, -2073940, -2045837, -2045648, -1978182, -1945769, -1935486, -1881608, -1654650, -1602520, -1506746, -1505294, -1475309, -1457605, -1327259, -1312217, -1178723, -1027439, -880781, -833776, -666675, -643098, -593446, -468772, -450369, -443225, -418164, -402004, -319964, -307400, -279414, -190199, -176644, -66862, -32745, -32686, -32352, -32261, -32035, -31928, -31414, -31308, -30925, -30411, -29503, -29182, -28573, -28500, -28093, -27743, -27716, -27351, -27201, -26834, -25946, -25019, -24469, -24341, -24292, -24151, -23732, -22769, -22242, -22002, -20863, -20762, -20644, -20189, -20009, -19142, -19036, -18980, -18616, -18196, -18123, -17942, -17915, -17601, -17494, -16669, -16417, -16317, -15051, -14796, -14742, -14600, -14443, -14159, -14046, -13860, -13804, -13745, -13634, -13498, -13497, -12688, -12471, -12222, -11993, -11467, -11332, -10783, -10250, -10114, -10089, -9930, -9434, -9336, -9128, -9109, -8508, -8460, -8198, -8045, -7850, -7342, -7229, -6762, -6302, -6245, -6171, -5957, -5842, -4906, -4904, -4630, -4613, -4567, -4427, -4091, -4084, -3756, -3665, -3367, -3186, -2922, -2372, -2331, -1936, -1683, -1350, -1002, -719, -152, -128, -127, -124, -122, -121, -119, -116, -113, -112, -111, -107, -104, -102, -101, -100, -95, -94, -91, -90, -87, -81, -80, -79, -78, -73, -72, -69, -68, -66, -65, -63, -57, -54, -52, -51, -48, -47, -46, -45, -43, -41, -37, -33, -31, -30, -27, -25, -21, -18, -15, -12, -8, -1, 0, 1, 3, 4, 5, 6, 11, 14, 17, 23, 25, 26, 27, 28, 29, 31, 32, 39, 41, 46, 49, 51, 52, 56, 58, 61, 64, 66, 67, 70, 74, 79, 80, 86, 88, 89, 92, 93, 99, 102, 104, 109, 113, 117, 120, 122, 123, 127, 695, 912, 1792, 2857, 3150, 3184, 4060, 4626, 5671, 6412, 6827, 7999, 8017, 8646, 8798, 9703, 9837, 10049, 10442, 10912, 11400, 11430, 11436, 11551, 11937, 12480, 13258, 13469, 13689, 13963, 13982, 14019, 14152, 14259, 14346, 15416, 15613, 15954, 16241, 16814, 16844, 17564, 17702, 17751, 18537, 18763, 19890, 21216, 22238, 22548, 23243, 23383, 23386, 23407, 23940, 24076, 24796, 24870, 24898, 24967, 25139, 25176, 25699, 26167, 26536, 26614, 27008, 27087, 27142, 27356, 27458, 27800, 27827, 27924, 28595, 29053, 29229, 29884, 29900, 30460, 30556, 30701, 30815, 30995, 31613, 31761, 31772, 32099, 32308, 32674, 75627, 80472, 103073, 110477, 115718, 172418, 212268, 242652, 396135, 442591, 467087, 496849, 675960, 759343, 846297, 881562, 1003458, 1153900, 1156733, 1164679, 1208265, 1318372, 1363958, 1411655, 1522329, 1559609, 1677118, 1693658, 1703597, 1811223, 1831642, 1838628, 1884144, 1931545, 2085504, 2168156, 2170263, 2239585, 2308894, 2329235, 2364957, 2432335, 2435551, 2596936, 2684907, 2691011, 2705195, 2738057, 2851897, 2925289, 2995414, 3051534, 3216094, 3267022, 3271559, 3338856, 3440797, 3638325, 3651369, 3718696, 3724814, 3811069, 3854697, 3866969, 3893228, 3963455, 3984546, 4098376, 4100957, 4128113, 4200719, 4256344, 4286332, 4306356, 4316314, 4438803, 4458063, 4461638, 4552228, 4563790, 4584831, 4607992, 4884455, 4907501, 5045419, 5066844, 5150624, 5157161, 5190669, 5314703, 5337397, 5434807, 5440092, 5502665, 5523089, 5547122, 5566200, 5582936, 5634068, 5690330, 5776984, 5778441, 5818505, 5826687, 5827184, 5885735, 6010506, 6084254, 6131498, 6138324, 6250773, 6292801, 6306275, 6315242, 6331640, 6484374, 6502969, 6545970, 6666951, 6690905, 6763576, 6766086, 6895048, 6912227, 6929081, 6941390, 6978168, 7045672, 7085246, 7193307, 7197398, 7270237, 7276767, 7295790, 7375488, 7472098, 7687424, 7840758, 7880957, 7904499, 7948678, 7974126, 8015691, 8037685, 8112955, 8131380, 8140556, 8142384, 8220436, 8308817, 8331317, 22581970, 45809129, 48103779, 78212045, 79674901, 97299830, 110308649, 131744428, 136663461, 138485719, 139842794, 152061792, 152685704, 153070991, 156228213, 164884737, 174776199, 189346581, 193148547, 208582124, 223891881, 227308187, 237373798, 241214067, 242476929, 245495851, 260606593, 275202667, 285717038, 317009689, 322759532, 325369206, 339724742, 340122632, 345010859, 352375176, 355826263, 359695034, 366118516, 370008270, 382712922, 386379440, 401153345, 404986391, 426084981, 442843409, 473909474, 475192613, 492302667, 494747879, 506279889, 509813998, 537558350, 548423414, 548467404, 566383324, 574188786, 574792333, 591678147, 596558084, 597423476, 602432742, 603067874, 629552047, 630893263, 635249783, 644959276, 650710927, 664859367, 669433203, 684329599, 699991513, 714451929, 723556530, 739294558, 750895264, 757618344, 781123405, 796973385, 801637715, 804776709, 829003666, 829219068, 840167037, 854882202, 860066192, 864304878, 864808449, 867107161, 871871263, 880591851, 883020336, 883178082, 920223781, 936008673, 939417822, 956776353, 958281059, 962183717, 964059257, 967860573, 974322643, 974999286, 980009921, 1032949015, 1044249483, 1064892676, 1075628270, 1080848022, 1085571657, 1173635593, 1174809080, 1176744978, 1209783795, 1212074975, 1252323507, 1254757790, 1301450562, 1302240953, 1314501797, 1315121266, 1339304157, 1364304289, 1376260506, 1383883477, 1395158643, 1411117754, 1440755058, 1448365702, 1466814914, 1468433821, 1490105126, 1493912601, 1495600372, 1509536621, 1511014977, 1545693948, 1548924199, 1566583103, 1569747154, 1574097219, 1597784674, 1610710480, 1618324005, 1646105187, 1649417465, 1655649169, 1660619384, 1668826887, 1671093718, 1672456990, 1673477565, 1678638502, 1682302139, 1682515769, 1687920300, 1690062315, 1706031388, 1713660819, 1772170709, 1778416812, 1833443690, 1861312062, 1876004501, 1876358085, 1882435551, 1916050713, 1944906037, 1950207172, 1951593247, 1973638546, 1976288281, 1994977271, 2020053060, 2025281195, 2029716419, 2033980539, 2052482076, 2058251762, 2069273004, 2073978021, 2111013213, 2119886932, 2134609957, 2140349794, 2143934987]:
    print(i,best_or_l(i,True),len(l(i)),len(best_or_l(i,True)))
    score = score + (len(l(i))-len(best_or_l(i,True)))
print("Score:",score)

with open("brute_serious.json","w") as outfile:
    outfile.write(json.dumps(best,sort_keys=True,indent=2))

Oto losowe próbkowanie rodzajów programów, które ostatecznie znajdują się w tym algorytmie:

-387420483 99ⁿ6-
-16777208 4!╙8-
-999999 6╤1-
-362864 9!4²-
-46369 4!Fu±
-5045 57!±-
8101 9eL¬
19900 2╤τrΣ
46367 4!FD
68072 5╙│F\
99990 1╤5╤-
156246 75ⁿ¬τ
518393 76!²-
1814399 59!*D
6534927 35╙F*
14930357 56²F+
19999995 57╤τ-
25396560 7!│D*
65691025 9eKu²
100001000 3╤8╤+
200000002 8╤uτ
800000008 88╤u*
1626347584 88!+²
2000000018 99╤+τ
Sparr
źródło
4

Ruby, zapisano 52 znaki

na podstawie mojej odpowiedzi na podobne pytanie. Tworzy to dużą listę sposobów na uzyskanie liczby i wybiera najkrótszą. W przeciwieństwie do innych opublikowanych odpowiedzi, większość oszczędności uzyskuje na małych liczbach. W rzeczywistości nie próbuję liczb o wartościach bezwzględnych powyżej 2000.

$s = {};
Fact = [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]
Fib = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903]
Prime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999]
def shortest a,b=nil
    return $s[[a,b]] if $s[[a,b]]
    return $s[[a,b]] = ":#{a}" if (b||a).abs > 2000 #gives up on big inputs
    $s[[a,b]] = ":#{a}" #set a temp value to block calling with the same paramiters recursivly.
    l = []
    if b
        if a == b
            return $s[[a,b]] = ""
        elsif a > b
            l.push shortest(a-b)+"-"
            l.push "X"+shortest(b)
            l.push "¬" if b+2==a
            l.push "D" if b+1==a
        elsif a < b
            l.push shortest(b-a)+"+"
            l.push "²"+shortest(a*a,b) if a*a>a && a*a<=b+2
            l.push "τ"+shortest(a+a,b) if a+a<=b+2 && a+a>a
            l.push shortest(b/a)+"*" if a>2 && b%a == 0
            l.push ";"+shortest(a,b/a)+"*" if a>2 && b%a == 0
            l.push "╙"+shortest(2**a,b) if 2**a<=b+2
            l.push "╤"+shortest(10**a,b) if 10**a<=b+2
            l.push "F"+shortest(Fib[a],b) if Fib[a] and Fib[a]<=b+2 and a > 5
            l.push "P"+shortest(Prime[a],b) if Prime[a] and Prime[a]<=b+2
            l.push "!"+shortest(Fact[a],b) if Fact[a] and Fact[a]<=b+2 and a > 3
        end
    else
        return ($s[[a,b]] = a.to_s) if a<10 and a>-1
        l.push ":#{a}"
        if a<0
            l.push shortest(-a)+"±" 
            l.push shortest(~a)+"~"
            l.push shortest(a+1)+"D"
            l.push shortest(a+2)+"¬"
        else
            l.push shortest(a-1)+"u" 
            l.push shortest(a-2)+"⌐"
            (1..[a/2,100].min).each {|n|
                l.push shortest(n)+shortest(n,a)
            }
        end
    end
    return $s[[a,b]] = l.min_by{|x|x.length}
end

a = [-4427,-4091,-4084,-3756,-3665,-3367,-3186,-2922,-2372,-2331,-1936,-1683,-1350,-1002,-719,-152,-128,-127,-124,-122,-121,-119,-116,-113,-112,-111,-107,-104,-102,-101,-100,-95,-94,-91,-90,-87,-81,-80,-79,-78,-73,-72,-69,-68,-66,-65,-63,-57,-54,-52,-51,-48,-47,-46,-45,-43,-41,-37,-33,-31,-30,-27,-25,-21,-18,-15,-12,-8,-1,0,1,3,4,5,6,11,14,17,23,25,26,27,28,29,31,32,39,41,46,49,51,52,56,58,61,64,66,67,70,74,79,80,86,88,89,92,93,99,102,104,109,113,117,120,122,123,127,695,912,1792,2857,3150,3184,4060,4626,5671,6412,6827,7999,8017]
a.sort_by!{|x|x.abs}
c = a.map{
    |i|
    p [i,shortest(i)]
    shortest(i)
}
p c.inject(0){|a,b|a+b.length}

I pełna lista wszystkich skróconych liczb (posortowanych według wartości bezwzględnej):

[0, "0"]
[-1, "1±"]
[1, "1"]
[3, "3"]
[4, "4"]
[5, "5"]
[6, "6"]
[-8, "8±"]
[11, "9⌐"]
[-12, "6τ±"]
[14, "7τ"]
[-15, "7τ~"]
[17, "6P"]
[-18, "9τ±"]
[-21, "8F±"]
[23, "8P"]
[25, "5²"]
[-25, "5²±"]
[29, "9P"]
[-30, "9P~"]
[32, "5╙"]
[-33, "5╙~"]
[-37, "6²~"]
[49, "7²"]
[64, "6╙"]
[-65, "6╙~"]
[-81, "9²±"]
[-100, "2╤±"]
[-101, "2╤~"]
[-102, "2╤⌐±"]
[102, "2ѩ"]
[113, "9PP"]
[-113, "9PP±"]
[-119, "5!D±"]
[120, "5!"]
[-121, "5!~"]
[122, "5!⌐"]
[-122, "5!⌐±"]
[127, "7╙D"]
[-127, "7╙D±"]
[-128, "7╙±"]
[-719, "6!D±"]
[-1002, "3╤⌐±"]
[-1683, "9P²τ~"]
[1792, "78╙*"]
[-1936, ":44²±"]

Uwaga: Nie zostały one przetestowane w komponentach typu bean, ponieważ nie mam właściwie dostępu do.

MegaTom
źródło
Szybko zauważyłem, że używasz ~, a ja nie, co oszczędza kilka bajtów. Spędziłem 30 minut zastanawiając się, dlaczego twój wynik dla małych liczb był lepszy, gdy znajduję garść, której nie masz. W końcu zdałem sobie sprawę, że liczę trywialny przypadek dla 0-9 jako 0-9, a nie: 0-: 9. Kosztowałem 6 punktów za wszystkie trzy rozwiązania. Dzięki, że kazałeś mi to zbadać.
Sparr
@sparr Miałem wrażenie, że to pomoże ci tylko lepiej.
MegaTom,
4

Python 3, 52 55 bajtów zapisanych

To rozwiązanie działa wstecz od poprzednich dwóch. Zamiast montować programy od lewej do prawej, zaczynam od końca i pracuję wstecz. Aby to zadziałało, muszę uruchomić moje programy i nie mogę przycinać instrukcji na podstawie ich parametrów, ponieważ ich parametry jeszcze nie istnieją, gdy zostaną dodane. Moje obejście tego nie jest zawarte w tej odpowiedzi; wiąże się z informowaniem SeriouslyCommands.py, aby rzuciła IOError za każdym razem, gdy wywołujące szaleństwo funkcje zostaną wywołane z dużymi argumentami, i zgłosiła ten wyjątek, aby go złapać.

Oto jak działa ten program:

Zaczynam od pustego stosu i wiem, że chcę jednego numeru. Jakie instrukcje mogą to osiągnąć? 0-9 daje mi liczbę całkowitą i nie wymaga niczego na stosie, więc są to kompletne programy. K, L, T, e i kilka innych dostają numer i potrzebuję numeru (nie rozróżniam liczb zmiennoprzecinkowych i liczb całkowitych, dopóki nie zostanie sprawdzone wyjście). *, + itd. zamieniają dwie liczby na liczby. I tak dalej.

Teraz mam kilka kompletnych programów i listę niekompletnych sufiksów programów, które mogą zamienić niektóre znane układy typów na stosie w jedną liczbę, którą chcę. Powtórz ten proces i dołącz do nich każdą instrukcję, która może spełnić jedno / niektóre / wszystkie wymagania stosu, zapisz te, które są kompletnymi programami i wyślij te niekompletne do następnego kroku.

W ostatnich dwóch krokach często przycinam możliwości, ponieważ wiem, że nie mam już żadnych wymagań stosu, kiedy skończę (więc 0-9 to jedyne prawidłowe instrukcje, które należy dołączyć do programu na końcu) i wcześniej Mogę mieć tylko jeden numer jako wymóg.

Nic dziwnego, że to rozwiązanie daje dokładnie taki sam wynik, jak lepsze z moich pozostałych dwóch rozwiązań. Znajdują prawie dokładnie taki sam zestaw wyników.

Ten program może prawdopodobnie zwiększyć do 6 znaków w krótszym czasie niż drugi, ale nadal byłby zaporowy.

Myślę, że można by stworzyć świetne rozwiązanie, łącząc oba, łącząc prefiksy i sufiksy i łącząc je pośrodku, jeśli ich stosy są kompatybilne.

#!/usr/bin/env python3
# -*- coding: cp437 -*-

import os
import sys
import json
import math
import time
import random
import timeit

#!/usr/bin/env python3
# -*- coding: cp437 -*-

# instruction, pops, pushes, 
instructions = [
    [0x30, [], ['number']], #  (0): push 0
    [0x31, [], ['number']], #  (1): push 1
    [0x32, [], ['number']], #  (2): push 2
    [0x33, [], ['number']], #  (3): push 3
    [0x34, [], ['number']], #  (4): push 4
    [0x35, [], ['number']], #  (5): push 5
    [0x36, [], ['number']], #  (6): push 6
    [0x37, [], ['number']], #  (7): push 7
    [0x38, [], ['number']], #  (8): push 8
    [0x39, [], ['number']], #  (9): push 9

    [0x4B, ['number'], ['number']], #  (K): pop a: push ceil(a)
    [0x4C, ['number'], ['number']], #  (L): pop a: push floor(a)

    [0x54, ['number'], ['number']], #  (T): pop a: push tan(a); pop [a],b,c: set [a][b] to c, push [a]
    [0x65, ['number'], ['number']], #  (e): pop a: push exp(a)

    [0xAB, ['number'], ['number']], #  (½): pop a: push a/2 (float division)
    [0xAC, ['number'], ['number']], #  (¼): pop a: push a/4 (float division)

    [0x21, ['number'], ['number']], #  (!): pop a: push a! (factorial(a))
    [0x44, ['number'], ['number']], #  (D): pop a: push a-1; pop [a]: push stddev([a])
    [0x46, ['number'], ['number']], #  (F): pop a: push Fib(a) (Fib(0)=0, Fib(1)=Fib(2)=1); pop [a]: push a[0]
    [0x50, ['number'], ['number']], #  (P): pop a: push the a-th prime (zero-indexed)
    [0x75, ['number'], ['number']], #  (u): pop a: push a+1
    [0x7E, ['number'], ['number']], #  (~): pop a: push ~a (unary bitwise negate)
    [0xA9, ['number'], ['number']], #  (⌐): pop a: push a+2
    [0xAA, ['number'], ['number']], #  (¬): pop a: push a-2
    [0xD1, ['number'], ['number']], #  (╤): pop a: push 10**a
    [0xD3, ['number'], ['number']], #  (╙): pop a: push 2**a
    [0xE7, ['number'], ['number']], #  (τ): pop a: push 2*a
    [0xF1, ['number'], ['number']], #  (±): pop a: push -a (unary negate)
    [0xFD, ['number'], ['number']], #  (²): pop a: push a*a

    [0x2A, ['number','number'], ['number']], #  (*): pop a,b: push a*b; pop a,[b] or [b],a: apply a* to each element in the array; pop [a],[b]: push dot product of [a] and [b] (sum([a[i]*b[i] for i in len(a)]) (shorter is padded with 0s)
    [0x2B, ['number','number'], ['number']], #  (+): pop a,b: push a+b; pop [a],[b]: push [a][b] (append [b] to [a]); pop a,[b] or [b],a: apply a+ to each element in the array
    [0x2D, ['number','number'], ['number']], #  (-): pop a,b: push a-b; pop [a],[b]: push [a]-[b] (all elements of [a] not in [b])
    [0x2F, ['number','number'], ['number']], #  (/): pop a,b: push a/b (float division); pop [a]: rotate [a] right by 1, push [a]
    [0x5C, ['number','number'], ['number']], #  (\): pop a,b: push a/b (integer division); pop [a]: rotate [a] left by 1, push [a]
    [0xFC, ['number','number'], ['number']], #  (ⁿ): pop a,b: push pow(a,b)

    [0xDB, ['number','number'], ['number']], #  (█): pop a,b: push C(a,b) (aCb)
    [0xDC, ['number','number'], ['number']], #  (▄): pop a,b: push P(a,b) (aPb)

    [0x3B, ['number'], ['number','number']], #  (;): pop a: push a,a (duplicates top element)

    [0xE3, ['list'], ['number']], #  (π): pop [a]: push product([a])
    [0xE4, ['list'], ['number']], #  (Σ): pop [a]: push sum([a])

    [0x69, ['list'], ['numbers']], #  (i): pop [a]: push each element from [a], starting from end (flatten)

    [0xC6, ['numbers'], ['numbers']], #  (╞): pop a: make a total copies of each element on stack (3 [a,b,c] -> [a,a,a,b,b,b,c,c,c])     

    [0xC7, ['numbers'], ['list']], #  (╟): pop a: pop a elements and push a list containing those elements in their original order

    [0x0B, ['list'], ['list']], #  (♂): take the next command and map it over the top of the stack (for example, ♂A is equivalent to `A`M)

    [0x61, ['numbers'], ['numbers']], #  (a): invert the stack ([a,b,c,d] -> [d,c,b,a])
    [0xB3, ['numbers'], ['numbers']], #  (│): duplicate stack ([a,b,c] => [a,b,c,a,b,c])
    [0xC5, ['numbers'], ['numbers']], #  (┼): duplicate each element on stack ([a,b,c] => [a,a,b,b,c,c])

    [0x72, ['number'], ['list']], #  (r): pop a: push [0,1,...,a-1] (range(0,a))
    [0xB9, ['number'], ['list']], #  (╣): pop a: push the ath row in Pascal's triangle

    [0x78, ['number','number'], ['list']], #  (x): pop a,b: push [a,b) (range(a,b)); pop [a]: push range(*a)
    [0x78, ['list'], ['list']], #  (x): pop a,b: push [a,b) (range(a,b)); pop [a]: push range(*a)

    [0x6B, ['numbers'], ['list']],#  (k): pop all elements from stack, convert to list (in the order they were on the stack, starting from the top) and push

    # 0x3A, #  (:): numeric literal delimiter: pushes the longest string of characters in '0123456789+-.ij' as a numeric
    # 0x4D, #  (M): pop f,[a], execute f for each element in [a], using the element as a temporary stack, push [a] (similar to map(f,[a])); pop [a]: push max([a])
    # 0x52, #  (R): pop f,[a]: call f, using [a] as a temporary stack, push [a] (similar to reduce(f,[a])); pop [a]: push [a][::-1] (reverse); pop a: push [1,2,...,a] (range(1,a+1))
    # 0x57, #  (W): loop delimiter: peek top of stack, repeat code in loop while a evaluates to true
    # 0x60, #  (`): function literal delimiter, pushes function whose body contains all of the commands until the next `. An implied ` is present at EOF if needed.
]

provides = {
    'number':[],
    'numbers':[],
    'list':[]
    }

wants = [[]]*256

for i in instructions:
    wants[i[0]] = i[1]
    provides[i[2][0]].append(i[0])

from seriously import Seriously,chr_cp437,ord_cp437

MAX=2**31

# returns ([finished programs],[new programs]), one of which will be empty
def extend_program(p):
    finished_programs=[]
    new_programs=[]
    # print(p)
    for i in provides[p[1][-1]]:
        new_p = chr_cp437(i)+p[0]
        new_wants = p[1][:-1]+wants[i]
        if new_wants==[]: # we've reached a complete program! run it
            # print(p[0])
            now = time.clock()
            # print(p[0])
            try:
                res = Seriously().eval(new_p)
            except:
                return ([],[])
            # print(res)
            elapsed = time.clock()-now
            if elapsed>0.001:
                try:
                    elapsed = timeit.timeit('Seriously().eval("'+str(new_p.encode('unicode_escape'))+'")','from seriously import Seriously',number=1000)
                except:
                    continue
                if elapsed>0.005:
                    print("SLOW:")
                    print(new_p)
                    print(res)
                    print(elapsed)
            # print(res)
            finished_programs.append([new_p,res])
            continue
        if len(new_p)==MAXLEN and new_wants!=[]: # no room left to fulfill any wants
            continue
        if len(new_p)==MAXLEN-1 and new_wants != ['number']: # no room left to fulfill complex wants
            continue
        new_programs.append([new_p,new_wants])
    if len(p[1])>1 and p[1][-1]=='number' and p[1][-2]=='number':
        for i in provides['numbers']:
            new_p = chr_cp437(i)+p[0]
            old_wants = p[1]
            while len(p[1]) and p[1][-1]=='number':
                p[1].pop()
            new_wants = old_wants+wants[i]
            if len(new_p)==MAXLEN and new_wants!=[]:
                continue
            if len(new_p)==MAXLEN-1 and \
                new_wants != ['list'] and \
                new_wants != ['number'] and \
                new_wants != ['numbers']:
                continue
            new_programs.append([new_p,new_wants])
    return (finished_programs,new_programs)

unfinished_programs = [['',['number']]]
best = {}

def l(n,force_colon=False):
    if force_colon:
        return ':'+str(n)
    if n>=0 and n<10:
        return str(n)
    elif n<0 and n>-10:
        return str(-n)+'±'
    return ':'+str(n)

def cand(n,rep):
    # print(n,rep,len(rep),l(n),len(l(n)),best[n] if n in best else "")
    if n<=MAX and n>=-MAX and (len(rep)==1 or len(rep)<len(l(n))) and (n not in best or len(rep)<len(best[n])):
        best[n] = rep
        # print("woot")
        return True
    return False

MAXLEN = 5

for i in range(MAXLEN):
    print(i+1,"/",MAXLEN)
    new_unfinished_programs = []
    c = ''
    for p in unfinished_programs:
        if len(p[0]) and p[0][-1]!= c:
            print(c)
            c=p[0][-1]
        (finished_programs,new_programs) = extend_program(p)
        for f in finished_programs:
            # print(f[0])
            # print(f[1][0])
            if len(f[1])==0:
                # print("TOO MANY RESULTS")
                continue
            if isinstance(f[1][0],int):
                cand(f[1][0],f[0])
            # if isinstance(f[1][0],list):
                # print("LIST RESULT")
        new_unfinished_programs = new_unfinished_programs + new_programs
    unfinished_programs = new_unfinished_programs

def best_or_l(n,force_colon=False):
    if n in best:
        return best[n]
    if n<0 and -n in best:
        return best[-n]+"±"
    return l(n,force_colon)

for key,value in sorted(best.items()):
    # if random.random()<0.01:
    print(key,value)

score = 0
for i in [-2124910654, -2117700574, -2098186988, -2095671996, -2083075613, -2058271687, -2052250777, -2024215903, -2019485642, -2016095616, -2009838326, -2009173317, -2007673992, -2000014444, -1999825668, -1992515610, -1989566707, -1975506037, -1955473208, -1950731112, -1949886423, -1920624450, -1918465596, -1916287469, -1905036556, -1903956118, -1888944417, -1865221863, -1856600057, -1842797147, -1835637734, -1812631357, -1805740096, -1798015647, -1726688233, -1723609647, -1713776890, -1700307138, -1687644479, -1645515069, -1617635994, -1610444000, -1579053372, -1556891649, -1549652116, -1537732956, -1535180388, -1527162056, -1524851611, -1524658412, -1523244369, -1521379172, -1520191198, -1519035741, -1516978241, -1508892332, -1489938422, -1482102944, -1481823232, -1470621147, -1469145091, -1446844485, -1441790509, -1437843276, -1435359182, -1434186947, -1429816311, -1429393781, -1419752032, -1400387846, -1385152926, -1372620863, -1369257355, -1361933674, -1360480816, -1334846204, -1323741718, -1323660173, -1312800992, -1308824840, -1304658551, -1287829999, -1283767920, -1276288210, -1264275838, -1263965596, -1262866901, -1255421887, -1251428680, -1244825786, -1243200329, -1235305532, -1233977691, -1220537074, -1214100716, -1199414474, -1190725823, -1190401800, -1178717689, -1172378149, -1147869245, -1142875190, -1138538768, -1137864183, -1124917489, -1102987222, -1095920186, -1083001017, -1080902655, -1047122002, -1031842676, -1029877334, -1020849489, -1001684838, -998419619, -990915088, -985235989, -982515261, -979074894, -974195629, -973832940, -965324937, -944246431, -938387588, -933873331, -932692878, -928039285, -927947459, -914008773, -907981688, -906376330, -903502449, -898112547, -887444438, -862658502, -843628573, -822463032, -786051095, -776932426, -776033951, -752042328, -746532472, -743149468, -740225710, -734414418, -725435852, -708101516, -699674783, -694869277, -693246525, -690571518, -689249770, -688581912, -686864294, -681445866, -647992869, -641101583, -631409299, -624686189, -613079884, -593711206, -591688546, -591331185, -574790069, -573024823, -565387051, -565137163, -556338668, -556291492, -541411509, -538932064, -500479857, -482419890, -468050561, -424532545, -420534171, -408741873, -406973874, -387664799, -382084509, -367095703, -352332569, -352195997, -346430007, -324596389, -320119776, -306594578, -305952425, -283718911, -267302378, -243302738, -242955859, -232180029, -225394407, -217418127, -212286453, -208344820, -191300139, -186177744, -175765723, -161763935, -157025501, -140389149, -132298608, -126175769, -70566352, -68748576, -53985905, -52674668, -50228620, -39678495, -19825663, -8349922, -8186722, -8125700, -8073135, -8043230, -7994382, -7874433, -7863624, -7784916, -7782477, -7696343, -7607278, -7531250, -7388060, -7368780, -7367625, -7353084, -7334489, -7281141, -7267149, -7140057, -7119066, -7010389, -6992089, -6975258, -6863360, -6784772, -6741079, -6585985, -6550401, -6520011, -6495144, -6459702, -6294273, -6178342, -6169344, -6139663, -6090928, -6022637, -5992707, -5971334, -5925304, -5880940, -5873707, -5807953, -5703992, -5692895, -5535131, -5488812, -5468330, -5404148, -5290247, -5274221, -5264144, -5234715, -5224048, -5179837, -5084014, -5043990, -5028537, -5011679, -4998333, -4922901, -4880159, -4874060, -4787390, -4749096, -4736217, -4502308, -4480611, -4424319, -4363262, -4349743, -4290050, -4240069, -4239657, -4174072, -4093051, -4045363, -4037689, -4033352, -3839265, -3766343, -3716899, -3680075, -3679053, -3581776, -3539227, -3461158, -3282526, -3205947, -3183427, -3169708, -3166430, -3089822, -3061531, -2947574, -2930733, -2919246, -2872882, -2830770, -2739228, -2713826, -2634018, -2613990, -2525529, -2439507, -2432921, -2376201, -2335005, -2307524, -2265548, -2176176, -2123133, -2108773, -2105934, -2075032, -2073940, -2045837, -2045648, -1978182, -1945769, -1935486, -1881608, -1654650, -1602520, -1506746, -1505294, -1475309, -1457605, -1327259, -1312217, -1178723, -1027439, -880781, -833776, -666675, -643098, -593446, -468772, -450369, -443225, -418164, -402004, -319964, -307400, -279414, -190199, -176644, -66862, -32745, -32686, -32352, -32261, -32035, -31928, -31414, -31308, -30925, -30411, -29503, -29182, -28573, -28500, -28093, -27743, -27716, -27351, -27201, -26834, -25946, -25019, -24469, -24341, -24292, -24151, -23732, -22769, -22242, -22002, -20863, -20762, -20644, -20189, -20009, -19142, -19036, -18980, -18616, -18196, -18123, -17942, -17915, -17601, -17494, -16669, -16417, -16317, -15051, -14796, -14742, -14600, -14443, -14159, -14046, -13860, -13804, -13745, -13634, -13498, -13497, -12688, -12471, -12222, -11993, -11467, -11332, -10783, -10250, -10114, -10089, -9930, -9434, -9336, -9128, -9109, -8508, -8460, -8198, -8045, -7850, -7342, -7229, -6762, -6302, -6245, -6171, -5957, -5842, -4906, -4904, -4630, -4613, -4567, -4427, -4091, -4084, -3756, -3665, -3367, -3186, -2922, -2372, -2331, -1936, -1683, -1350, -1002, -719, -152, -128, -127, -124, -122, -121, -119, -116, -113, -112, -111, -107, -104, -102, -101, -100, -95, -94, -91, -90, -87, -81, -80, -79, -78, -73, -72, -69, -68, -66, -65, -63, -57, -54, -52, -51, -48, -47, -46, -45, -43, -41, -37, -33, -31, -30, -27, -25, -21, -18, -15, -12, -8, -1, 0, 1, 3, 4, 5, 6, 11, 14, 17, 23, 25, 26, 27, 28, 29, 31, 32, 39, 41, 46, 49, 51, 52, 56, 58, 61, 64, 66, 67, 70, 74, 79, 80, 86, 88, 89, 92, 93, 99, 102, 104, 109, 113, 117, 120, 122, 123, 127, 695, 912, 1792, 2857, 3150, 3184, 4060, 4626, 5671, 6412, 6827, 7999, 8017, 8646, 8798, 9703, 9837, 10049, 10442, 10912, 11400, 11430, 11436, 11551, 11937, 12480, 13258, 13469, 13689, 13963, 13982, 14019, 14152, 14259, 14346, 15416, 15613, 15954, 16241, 16814, 16844, 17564, 17702, 17751, 18537, 18763, 19890, 21216, 22238, 22548, 23243, 23383, 23386, 23407, 23940, 24076, 24796, 24870, 24898, 24967, 25139, 25176, 25699, 26167, 26536, 26614, 27008, 27087, 27142, 27356, 27458, 27800, 27827, 27924, 28595, 29053, 29229, 29884, 29900, 30460, 30556, 30701, 30815, 30995, 31613, 31761, 31772, 32099, 32308, 32674, 75627, 80472, 103073, 110477, 115718, 172418, 212268, 242652, 396135, 442591, 467087, 496849, 675960, 759343, 846297, 881562, 1003458, 1153900, 1156733, 1164679, 1208265, 1318372, 1363958, 1411655, 1522329, 1559609, 1677118, 1693658, 1703597, 1811223, 1831642, 1838628, 1884144, 1931545, 2085504, 2168156, 2170263, 2239585, 2308894, 2329235, 2364957, 2432335, 2435551, 2596936, 2684907, 2691011, 2705195, 2738057, 2851897, 2925289, 2995414, 3051534, 3216094, 3267022, 3271559, 3338856, 3440797, 3638325, 3651369, 3718696, 3724814, 3811069, 3854697, 3866969, 3893228, 3963455, 3984546, 4098376, 4100957, 4128113, 4200719, 4256344, 4286332, 4306356, 4316314, 4438803, 4458063, 4461638, 4552228, 4563790, 4584831, 4607992, 4884455, 4907501, 5045419, 5066844, 5150624, 5157161, 5190669, 5314703, 5337397, 5434807, 5440092, 5502665, 5523089, 5547122, 5566200, 5582936, 5634068, 5690330, 5776984, 5778441, 5818505, 5826687, 5827184, 5885735, 6010506, 6084254, 6131498, 6138324, 6250773, 6292801, 6306275, 6315242, 6331640, 6484374, 6502969, 6545970, 6666951, 6690905, 6763576, 6766086, 6895048, 6912227, 6929081, 6941390, 6978168, 7045672, 7085246, 7193307, 7197398, 7270237, 7276767, 7295790, 7375488, 7472098, 7687424, 7840758, 7880957, 7904499, 7948678, 7974126, 8015691, 8037685, 8112955, 8131380, 8140556, 8142384, 8220436, 8308817, 8331317, 22581970, 45809129, 48103779, 78212045, 79674901, 97299830, 110308649, 131744428, 136663461, 138485719, 139842794, 152061792, 152685704, 153070991, 156228213, 164884737, 174776199, 189346581, 193148547, 208582124, 223891881, 227308187, 237373798, 241214067, 242476929, 245495851, 260606593, 275202667, 285717038, 317009689, 322759532, 325369206, 339724742, 340122632, 345010859, 352375176, 355826263, 359695034, 366118516, 370008270, 382712922, 386379440, 401153345, 404986391, 426084981, 442843409, 473909474, 475192613, 492302667, 494747879, 506279889, 509813998, 537558350, 548423414, 548467404, 566383324, 574188786, 574792333, 591678147, 596558084, 597423476, 602432742, 603067874, 629552047, 630893263, 635249783, 644959276, 650710927, 664859367, 669433203, 684329599, 699991513, 714451929, 723556530, 739294558, 750895264, 757618344, 781123405, 796973385, 801637715, 804776709, 829003666, 829219068, 840167037, 854882202, 860066192, 864304878, 864808449, 867107161, 871871263, 880591851, 883020336, 883178082, 920223781, 936008673, 939417822, 956776353, 958281059, 962183717, 964059257, 967860573, 974322643, 974999286, 980009921, 1032949015, 1044249483, 1064892676, 1075628270, 1080848022, 1085571657, 1173635593, 1174809080, 1176744978, 1209783795, 1212074975, 1252323507, 1254757790, 1301450562, 1302240953, 1314501797, 1315121266, 1339304157, 1364304289, 1376260506, 1383883477, 1395158643, 1411117754, 1440755058, 1448365702, 1466814914, 1468433821, 1490105126, 1493912601, 1495600372, 1509536621, 1511014977, 1545693948, 1548924199, 1566583103, 1569747154, 1574097219, 1597784674, 1610710480, 1618324005, 1646105187, 1649417465, 1655649169, 1660619384, 1668826887, 1671093718, 1672456990, 1673477565, 1678638502, 1682302139, 1682515769, 1687920300, 1690062315, 1706031388, 1713660819, 1772170709, 1778416812, 1833443690, 1861312062, 1876004501, 1876358085, 1882435551, 1916050713, 1944906037, 1950207172, 1951593247, 1973638546, 1976288281, 1994977271, 2020053060, 2025281195, 2029716419, 2033980539, 2052482076, 2058251762, 2069273004, 2073978021, 2111013213, 2119886932, 2134609957, 2140349794, 2143934987]:
    # print(i,best_or_l(i,True))
    score = score + (len(l(i))-len(best_or_l(i,True)))
print("Score:",score)

with open("brute_serious_reverse.json","w") as outfile:
    outfile.write(json.dumps(best,sort_keys=True,indent=2))
Sparr
źródło
3

Python 3, 34 Zapisano 39 bajtów

Ten program po prostu oblicza każdą liczbę, którą może osiągnąć, używając prostych kombinacji operatorów binarnych i jednoargumentowych, co obejmuje 366 000 spośród liczb całkowitych 4B, co daje w sumie kilkadziesiąt przypadków testowych. Następnie wypisuję te wyniki lub trywialne rozwiązanie. Jest to technicznie sprzeczne z przepisami, ponieważ jest pewne, że istnieje lepsze rozwiązanie w niektórych przypadkach, ale jestem pewien, że nikt nie wymyśli rozwiązania, które z pewnością spełnia tę zasadę.

Poza tym produkuję cały wynik naraz, ponieważ 30 sekund czasu konfiguracji można wytrzymać raz, a nie 1000 razy. Skomentowane sekcje znacznie zwiększają czas działania, jednocześnie nieznacznie zmniejszając wynik.

#!/usr/bin/env python3
# -*- coding: cp437 -*-

import math
import gmpy
import json
import random

from seriously import chr_cp437

# MAX=2**31
MAX = 2**31

best = {}

def l(n,force_colon=False):
    if force_colon:
        return ':'+str(n)
    if n>=0 and n<10:
        return str(n)
    elif n<0 and n>-10:
        return str(-n)+chr_cp437(0xF1)
    return ':'+str(n)

def l2(n,m):
    if n<10 or best_or_l(n)[-1] in "0123456789":
        rep = l(n)+best_or_l(m)
    else:
        rep = best_or_l(n)+best_or_l(m,True)
    return rep

def cand(n,rep):
    # print(n,rep,len(rep),best[n] if n in best else "")
    if n!=int(n):
        return False
    n=int(n)
    if n<=MAX and len(rep)<len(l(n)) and (n not in best or len(rep)<len(best[n])):
        best[n] = rep
        return True
    return False

def best_or_l(n,force_colon=False):
    if n in best:
        return best[n]
    if -n in best and n>0:
        return best[-n]+chr_cp437(0xF1)
    return l(n,force_colon)

# digits
for i in range(0,10):
    best[i]=str(i)

# factorials
for i in range(4,13):
    cand(math.factorial(i),l(i)+'!')

# 10**i
for i in range(2,12):
    cand(10**i,l(i)+chr_cp437(0xD1))

# 2**i
for i in range(2,32):
    cand(2**i,best_or_l(i)+chr_cp437(0xD3))

# a choose b
for a in range(2,1000): # 466 is the highest a for MAX=2**24
    for b in range(2,int(a/2+1)):
        n = math.factorial(a)/(math.factorial(b)*math.factorial(a-b))
        if n>MAX:
            break
        cand(n,l2(b,a)+chr_cp437(0xDB))

# a P b
for a in range(2,1000): # 257 is the highest a for MAX=2**24
    for b in range(2,int(a/2+1)):
        n = math.factorial(a)/math.factorial(a-b)
        if n>MAX:
            break
        cand(n,l2(b,a)+chr_cp437(0xDC))

# fibonacci
def fib_formula(n):
    golden_ratio = (1 + math.sqrt(5)) / 2
    val = (golden_ratio**n - (1 - golden_ratio)**n) / math.sqrt(5)
    return int(round(val))
for i in range(3,47):
    cand(fib_formula(i),best_or_l(i)+'F')

# i^2 and ^4
for i in range(5,int(math.sqrt(MAX)+1)):
    cand(i*i,best_or_l(i)+chr_cp437(0xFD))

# a^b
for a in range(2,int(math.pow(MAX,1.0/3))+1):
    for b in range(3,int(math.log(MAX)/math.log(3))+1):
        n = a**b
        cand(n,l2(b,a)+chr_cp437(0xFC))

# exp(i)
for i in range(3,22):
    cand(int(math.ceil(math.exp(i))),best_or_l(i)+'eK')
    cand(int(math.floor(math.exp(i))),best_or_l(i)+'eL')

# primes
def primes():
    n = 2
    while True:
        yield n
        n = gmpy.next_prime(n)
n = 0
for p in primes():
    # print(p)
    if p>MAX/1000:
        break
    rep = best_or_l(n)+'P'
    cand(p,rep)
    n=n+1

# +1 +2 -1 -2 *2 /2 /4 
for key,value in sorted(best.items()):
    cand(key+1,value+'u')
    cand(key+2,value+chr_cp437(0xA9))
    cand(key-1,value+'D')
    cand(key-2,value+chr_cp437(0xAA))
    cand(key*2,value+chr_cp437(0xE7))
    if float(key)/2 == int(float(key)/2):
        cand(int((float(key)/2)),value+chr_cp437(0xAB))
    cand(int(math.floor(float(key)/2)),value+chr_cp437(0xAB)+'L')
    cand(int(math.ceil(float(key)/2)),value+chr_cp437(0xAB)+'K')
    if float(key)/4 == int(float(key)/4):
        cand(int((float(key)/4)),value+chr_cp437(0xAC))
    cand(int(math.floor(float(key)/4)),value+chr_cp437(0xAC)+'L')
    cand(int(math.ceil(float(key)/4)),value+chr_cp437(0xAC)+'L')

# bitwise invert
for key,value in sorted(best.items()):
    cand(~key,value+'~')

# arithmetic with small second operands
for key,value in sorted(best.items()):
    for op in ["+","-","/","/K","\\","*"]:
        for i in range(3,10):
            if op == "+":
                n = key+i
            elif op == "-":
                n = key-i
            elif op == "/":
                if i==4:
                    continue
                n = float(key)/i
                if int(n)!=n:
                    continue
                n = int(n)
            elif op == "/K":
                if i==4:
                    continue
                n = int(math.ceil(float(key)/i))
                if n == float(key)/i:
                    continue
            elif op == "\\":
                if i==4:
                    continue
                n = int(math.floor(float(key)/i))
                if n == float(key)/i:
                    continue
            elif op == "*":
                n = key*i
            rep = value+best_or_l(i)+op
            cand(n,rep)

# for key,value in sorted(best.items()):
#     print(key,value)

# def maybe(n,rep):
#     if len(rep)<len(best_or_l(n)):
#         return True
#     return False

# b=[]
# for k in sorted(best.keys()):
#     b.append(k)
#     if k>100000000:
#         break

# def search_for_better(n):
#     if n in best:
#         return best[n]
#     for i in b:
#         if n+i in best:
#             rep = best[n+i]+best[i]+'-'
#             if maybe(n,rep):
#                 return rep
#     for i in b:
#         if n-i in best:
#             rep = best[n-i]+best[i]+'+'
#             if maybe(n,rep):
#                 return rep
#     return l(n)

for key,value in sorted(best.items()):
    if random.random()<0.001:
        print(key,value)

score = 0
for i in [-2124910654, -2117700574, -2098186988, -2095671996, -2083075613, -2058271687, -2052250777, -2024215903, -2019485642, -2016095616, -2009838326, -2009173317, -2007673992, -2000014444, -1999825668, -1992515610, -1989566707, -1975506037, -1955473208, -1950731112, -1949886423, -1920624450, -1918465596, -1916287469, -1905036556, -1903956118, -1888944417, -1865221863, -1856600057, -1842797147, -1835637734, -1812631357, -1805740096, -1798015647, -1726688233, -1723609647, -1713776890, -1700307138, -1687644479, -1645515069, -1617635994, -1610444000, -1579053372, -1556891649, -1549652116, -1537732956, -1535180388, -1527162056, -1524851611, -1524658412, -1523244369, -1521379172, -1520191198, -1519035741, -1516978241, -1508892332, -1489938422, -1482102944, -1481823232, -1470621147, -1469145091, -1446844485, -1441790509, -1437843276, -1435359182, -1434186947, -1429816311, -1429393781, -1419752032, -1400387846, -1385152926, -1372620863, -1369257355, -1361933674, -1360480816, -1334846204, -1323741718, -1323660173, -1312800992, -1308824840, -1304658551, -1287829999, -1283767920, -1276288210, -1264275838, -1263965596, -1262866901, -1255421887, -1251428680, -1244825786, -1243200329, -1235305532, -1233977691, -1220537074, -1214100716, -1199414474, -1190725823, -1190401800, -1178717689, -1172378149, -1147869245, -1142875190, -1138538768, -1137864183, -1124917489, -1102987222, -1095920186, -1083001017, -1080902655, -1047122002, -1031842676, -1029877334, -1020849489, -1001684838, -998419619, -990915088, -985235989, -982515261, -979074894, -974195629, -973832940, -965324937, -944246431, -938387588, -933873331, -932692878, -928039285, -927947459, -914008773, -907981688, -906376330, -903502449, -898112547, -887444438, -862658502, -843628573, -822463032, -786051095, -776932426, -776033951, -752042328, -746532472, -743149468, -740225710, -734414418, -725435852, -708101516, -699674783, -694869277, -693246525, -690571518, -689249770, -688581912, -686864294, -681445866, -647992869, -641101583, -631409299, -624686189, -613079884, -593711206, -591688546, -591331185, -574790069, -573024823, -565387051, -565137163, -556338668, -556291492, -541411509, -538932064, -500479857, -482419890, -468050561, -424532545, -420534171, -408741873, -406973874, -387664799, -382084509, -367095703, -352332569, -352195997, -346430007, -324596389, -320119776, -306594578, -305952425, -283718911, -267302378, -243302738, -242955859, -232180029, -225394407, -217418127, -212286453, -208344820, -191300139, -186177744, -175765723, -161763935, -157025501, -140389149, -132298608, -126175769, -70566352, -68748576, -53985905, -52674668, -50228620, -39678495, -19825663, -8349922, -8186722, -8125700, -8073135, -8043230, -7994382, -7874433, -7863624, -7784916, -7782477, -7696343, -7607278, -7531250, -7388060, -7368780, -7367625, -7353084, -7334489, -7281141, -7267149, -7140057, -7119066, -7010389, -6992089, -6975258, -6863360, -6784772, -6741079, -6585985, -6550401, -6520011, -6495144, -6459702, -6294273, -6178342, -6169344, -6139663, -6090928, -6022637, -5992707, -5971334, -5925304, -5880940, -5873707, -5807953, -5703992, -5692895, -5535131, -5488812, -5468330, -5404148, -5290247, -5274221, -5264144, -5234715, -5224048, -5179837, -5084014, -5043990, -5028537, -5011679, -4998333, -4922901, -4880159, -4874060, -4787390, -4749096, -4736217, -4502308, -4480611, -4424319, -4363262, -4349743, -4290050, -4240069, -4239657, -4174072, -4093051, -4045363, -4037689, -4033352, -3839265, -3766343, -3716899, -3680075, -3679053, -3581776, -3539227, -3461158, -3282526, -3205947, -3183427, -3169708, -3166430, -3089822, -3061531, -2947574, -2930733, -2919246, -2872882, -2830770, -2739228, -2713826, -2634018, -2613990, -2525529, -2439507, -2432921, -2376201, -2335005, -2307524, -2265548, -2176176, -2123133, -2108773, -2105934, -2075032, -2073940, -2045837, -2045648, -1978182, -1945769, -1935486, -1881608, -1654650, -1602520, -1506746, -1505294, -1475309, -1457605, -1327259, -1312217, -1178723, -1027439, -880781, -833776, -666675, -643098, -593446, -468772, -450369, -443225, -418164, -402004, -319964, -307400, -279414, -190199, -176644, -66862, -32745, -32686, -32352, -32261, -32035, -31928, -31414, -31308, -30925, -30411, -29503, -29182, -28573, -28500, -28093, -27743, -27716, -27351, -27201, -26834, -25946, -25019, -24469, -24341, -24292, -24151, -23732, -22769, -22242, -22002, -20863, -20762, -20644, -20189, -20009, -19142, -19036, -18980, -18616, -18196, -18123, -17942, -17915, -17601, -17494, -16669, -16417, -16317, -15051, -14796, -14742, -14600, -14443, -14159, -14046, -13860, -13804, -13745, -13634, -13498, -13497, -12688, -12471, -12222, -11993, -11467, -11332, -10783, -10250, -10114, -10089, -9930, -9434, -9336, -9128, -9109, -8508, -8460, -8198, -8045, -7850, -7342, -7229, -6762, -6302, -6245, -6171, -5957, -5842, -4906, -4904, -4630, -4613, -4567, -4427, -4091, -4084, -3756, -3665, -3367, -3186, -2922, -2372, -2331, -1936, -1683, -1350, -1002, -719, -152, -128, -127, -124, -122, -121, -119, -116, -113, -112, -111, -107, -104, -102, -101, -100, -95, -94, -91, -90, -87, -81, -80, -79, -78, -73, -72, -69, -68, -66, -65, -63, -57, -54, -52, -51, -48, -47, -46, -45, -43, -41, -37, -33, -31, -30, -27, -25, -21, -18, -15, -12, -8, -1, 0, 1, 3, 4, 5, 6, 11, 14, 17, 23, 25, 26, 27, 28, 29, 31, 32, 39, 41, 46, 49, 51, 52, 56, 58, 61, 64, 66, 67, 70, 74, 79, 80, 86, 88, 89, 92, 93, 99, 102, 104, 109, 113, 117, 120, 122, 123, 127, 695, 912, 1792, 2857, 3150, 3184, 4060, 4626, 5671, 6412, 6827, 7999, 8017, 8646, 8798, 9703, 9837, 10049, 10442, 10912, 11400, 11430, 11436, 11551, 11937, 12480, 13258, 13469, 13689, 13963, 13982, 14019, 14152, 14259, 14346, 15416, 15613, 15954, 16241, 16814, 16844, 17564, 17702, 17751, 18537, 18763, 19890, 21216, 22238, 22548, 23243, 23383, 23386, 23407, 23940, 24076, 24796, 24870, 24898, 24967, 25139, 25176, 25699, 26167, 26536, 26614, 27008, 27087, 27142, 27356, 27458, 27800, 27827, 27924, 28595, 29053, 29229, 29884, 29900, 30460, 30556, 30701, 30815, 30995, 31613, 31761, 31772, 32099, 32308, 32674, 75627, 80472, 103073, 110477, 115718, 172418, 212268, 242652, 396135, 442591, 467087, 496849, 675960, 759343, 846297, 881562, 1003458, 1153900, 1156733, 1164679, 1208265, 1318372, 1363958, 1411655, 1522329, 1559609, 1677118, 1693658, 1703597, 1811223, 1831642, 1838628, 1884144, 1931545, 2085504, 2168156, 2170263, 2239585, 2308894, 2329235, 2364957, 2432335, 2435551, 2596936, 2684907, 2691011, 2705195, 2738057, 2851897, 2925289, 2995414, 3051534, 3216094, 3267022, 3271559, 3338856, 3440797, 3638325, 3651369, 3718696, 3724814, 3811069, 3854697, 3866969, 3893228, 3963455, 3984546, 4098376, 4100957, 4128113, 4200719, 4256344, 4286332, 4306356, 4316314, 4438803, 4458063, 4461638, 4552228, 4563790, 4584831, 4607992, 4884455, 4907501, 5045419, 5066844, 5150624, 5157161, 5190669, 5314703, 5337397, 5434807, 5440092, 5502665, 5523089, 5547122, 5566200, 5582936, 5634068, 5690330, 5776984, 5778441, 5818505, 5826687, 5827184, 5885735, 6010506, 6084254, 6131498, 6138324, 6250773, 6292801, 6306275, 6315242, 6331640, 6484374, 6502969, 6545970, 6666951, 6690905, 6763576, 6766086, 6895048, 6912227, 6929081, 6941390, 6978168, 7045672, 7085246, 7193307, 7197398, 7270237, 7276767, 7295790, 7375488, 7472098, 7687424, 7840758, 7880957, 7904499, 7948678, 7974126, 8015691, 8037685, 8112955, 8131380, 8140556, 8142384, 8220436, 8308817, 8331317, 22581970, 45809129, 48103779, 78212045, 79674901, 97299830, 110308649, 131744428, 136663461, 138485719, 139842794, 152061792, 152685704, 153070991, 156228213, 164884737, 174776199, 189346581, 193148547, 208582124, 223891881, 227308187, 237373798, 241214067, 242476929, 245495851, 260606593, 275202667, 285717038, 317009689, 322759532, 325369206, 339724742, 340122632, 345010859, 352375176, 355826263, 359695034, 366118516, 370008270, 382712922, 386379440, 401153345, 404986391, 426084981, 442843409, 473909474, 475192613, 492302667, 494747879, 506279889, 509813998, 537558350, 548423414, 548467404, 566383324, 574188786, 574792333, 591678147, 596558084, 597423476, 602432742, 603067874, 629552047, 630893263, 635249783, 644959276, 650710927, 664859367, 669433203, 684329599, 699991513, 714451929, 723556530, 739294558, 750895264, 757618344, 781123405, 796973385, 801637715, 804776709, 829003666, 829219068, 840167037, 854882202, 860066192, 864304878, 864808449, 867107161, 871871263, 880591851, 883020336, 883178082, 920223781, 936008673, 939417822, 956776353, 958281059, 962183717, 964059257, 967860573, 974322643, 974999286, 980009921, 1032949015, 1044249483, 1064892676, 1075628270, 1080848022, 1085571657, 1173635593, 1174809080, 1176744978, 1209783795, 1212074975, 1252323507, 1254757790, 1301450562, 1302240953, 1314501797, 1315121266, 1339304157, 1364304289, 1376260506, 1383883477, 1395158643, 1411117754, 1440755058, 1448365702, 1466814914, 1468433821, 1490105126, 1493912601, 1495600372, 1509536621, 1511014977, 1545693948, 1548924199, 1566583103, 1569747154, 1574097219, 1597784674, 1610710480, 1618324005, 1646105187, 1649417465, 1655649169, 1660619384, 1668826887, 1671093718, 1672456990, 1673477565, 1678638502, 1682302139, 1682515769, 1687920300, 1690062315, 1706031388, 1713660819, 1772170709, 1778416812, 1833443690, 1861312062, 1876004501, 1876358085, 1882435551, 1916050713, 1944906037, 1950207172, 1951593247, 1973638546, 1976288281, 1994977271, 2020053060, 2025281195, 2029716419, 2033980539, 2052482076, 2058251762, 2069273004, 2073978021, 2111013213, 2119886932, 2134609957, 2140349794, 2143934987]:
    print(i)
    print(best_or_l(i,True))
    score = score + (len(l(i))-len(best_or_l(i,True)))
print("Score:",score)

# print(len(best))

with open("aim.json","w") as outfile:
    outfile.write(json.dumps(best,sort_keys=True,indent=2))

Oto losowe próbkowanie rodzajów programów, które ostatecznie znajdują się w tym algorytmie:

15875 49█²D
178085 :422²u
6195119 :2489²¬
11276166 :3358²⌐
14516098 :3810²¬
32924643 :5738²D
35003345 :8367²½K
66438802 :8151²u
95664294 3:363ⁿτ
100915813 3:847۪
111894084 :10578²
219662043 :14821²⌐
220849321 :14861²
236390625 :15375²
282710596 :16814²
296511180 :34439²¼L
375584401 :19380²u
460188303 :21452²D
465157056 :43135²¼L
509991890 :22583²u
510963420 :45209²¼L
606981768 :24637²D
659407868 8FeK½K
697212482 :18671²τ
805764994 :28386²¬
852225612 :41285²½L
941078331 :30677²⌐
1034715540 :45491²½L
1193771602 :34551²u
1326125054 :36416²¬
2030403600 :45060²
2078904023 :45595²¬
Sparr
źródło
1
@ Wynik KevinLau-notKenny w tym wyzwaniu to całkowity rozmiar danych wyjściowych, tysiąc programów w rzeczywistości, a nie rozmiar programu Python
Sparr
Lubię to podejście. Chcę być trochę bardziej elastyczny, jeśli chodzi o ograniczenie czasowe i zasadę „musisz zrobić lepiej niż trywialną”, jeśli pozwala to na bardziej interesujące rozwiązania - przede wszystkim chciałem uniknąć niestabilnych rozwiązań brutalnej siły, które działają przez wieki i banalne rozwiązanie „prepend a:”, które nie ma wyobraźni i jest sprzeczne z duchem wyzwania.
Mego
Zmodyfikowałem wymagania, tak aby rozwiązania musiały działać równie dobrze, jak rozwiązanie trywialne, a nie lepsze, jeśli to możliwe, i zwiększyłem limit czasu do 30 sekund na wejście. Twoje rozwiązanie jest teraz prawidłowe i możesz być w stanie wprowadzić dodatkowe ulepszenia dzięki łagodnym wymaganiom.
Mego