To nie jest tradycyjna odpowiedź, ale pomyślałem, że pomocne byłoby opublikowanie testów porównawczych niektórych z wspomnianych do tej pory technik. Testuję na 96-rdzeniowym serwerze z SQL Server 2017 CU9.
Wiele problemów ze skalowalnością jest powodowanych przez współbieżne wątki rywalizujące o pewien stan globalny. Rozważmy na przykład klasyczną rywalizację strony PFS. Może się to zdarzyć, jeśli zbyt wiele wątków roboczych musi zmodyfikować tę samą stronę w pamięci. Ponieważ kod staje się bardziej wydajny, może wymagać szybszego zatrzaśnięcia. To zwiększa sprzeczkę. Mówiąc prościej, efektywny kod może prowadzić do problemów ze skalowalnością, ponieważ stan globalny jest poważniej zagrożony. Powolny kod rzadziej powoduje problemy ze skalowalnością, ponieważ stan globalny nie jest uzyskiwany tak często.
HASHBYTES
skalowalność jest częściowo oparta na długości ciągu wejściowego. Moja teoria głosiła, że tak się dzieje, że po HASHBYTES
wywołaniu funkcji potrzebny jest dostęp do pewnego stanu globalnego . Łatwy do zaobserwowania stan globalny polega na przydzieleniu strony pamięci dla każdego połączenia w niektórych wersjach programu SQL Server. Trudniejsze do zaobserwowania jest to, że istnieje pewien rodzaj sprzeczności systemu operacyjnego. W rezultacie, jeśli HASHBYTES
jest wywoływany przez kod rzadziej, rywalizacja spada. Jednym ze sposobów zmniejszenia liczby HASHBYTES
połączeń jest zwiększenie ilości haszowania wymaganego na każde połączenie. Praca mieszania jest częściowo oparta na długości ciągu wejściowego. Aby odtworzyć problem skalowalności, który widziałem w aplikacji, musiałem zmienić dane demo. Rozsądnym najgorszym scenariuszem jest tabela z 21BIGINT
kolumny. Definicja tabeli zawarta jest w kodzie na dole. Aby zmniejszyć Local Factors ™, używam współbieżnych MAXDOP 1
zapytań, które działają na stosunkowo małych tabelach. Mój kod szybkiego testu porównawczego znajduje się na dole.
Uwaga: funkcje zwracają różne długości skrótów. MD5
i SpookyHash
oba mają 128- SHA256
bitowy skrót , to 256-bitowy skrót.
WYNIKI ( NVARCHAR
vs VARBINARY
konwersja i konkatenacja)
Aby przekonać się, czy konwersja i konkatenacja VARBINARY
jest naprawdę wydajniejsza / wydajniejsza niż NVARCHAR
, NVARCHAR
wersja RUN_HASHBYTES_SHA2_256
procedury składowanej została utworzona z tego samego szablonu (patrz „Krok 5” w sekcji KOD BENKMARKINGOWY poniżej). Jedyne różnice to:
- Nazwa procedury składowanej kończy się na
_NVC
BINARY(8)
ponieważ CAST
funkcja została zmieniona naNVARCHAR(15)
0x7C
został zmieniony na N'|'
Wynikające z:
CAST(FK1 AS NVARCHAR(15)) + N'|' +
zamiast:
CAST(FK1 AS BINARY(8)) + 0x7C +
Poniższa tabela zawiera liczbę skrótów wykonanych w ciągu 1 minuty. Testy zostały przeprowadzone na innym serwerze niż ten, który został wykorzystany w innych testach wymienionych poniżej.
╔════════════════╦══════════╦══════════════╗
║ Datatype ║ Test # ║ Total Hashes ║
╠════════════════╬══════════╬══════════════╣
║ NVARCHAR ║ 1 ║ 10200000 ║
║ NVARCHAR ║ 2 ║ 10300000 ║
║ NVARCHAR ║ AVERAGE ║ * 10250000 * ║
║ -------------- ║ -------- ║ ------------ ║
║ VARBINARY ║ 1 ║ 12500000 ║
║ VARBINARY ║ 2 ║ 12800000 ║
║ VARBINARY ║ AVERAGE ║ * 12650000 * ║
╚════════════════╩══════════╩══════════════╝
Patrząc tylko na średnie, możemy obliczyć korzyść z przejścia na VARBINARY
:
SELECT (12650000 - 10250000) AS [IncreaseAmount],
ROUND(((126500000 - 10250000) / 10250000) * 100.0, 3) AS [IncreasePercentage]
To zwraca:
IncreaseAmount: 2400000.0
IncreasePercentage: 23.415
WYNIKI (algorytmy i implementacje skrótu)
Poniższa tabela zawiera liczbę skrótów wykonanych w ciągu 1 minuty. Na przykład użycie CHECKSUM
84 równoczesnych zapytań spowodowało wykonanie ponad 2 miliardów skrótów przed upływem czasu.
╔════════════════════╦════════════╦════════════╦════════════╗
║ Function ║ 12 threads ║ 48 threads ║ 84 threads ║
╠════════════════════╬════════════╬════════════╬════════════╣
║ CHECKSUM ║ 281250000 ║ 1122440000 ║ 2040100000 ║
║ HASHBYTES MD5 ║ 75940000 ║ 106190000 ║ 112750000 ║
║ HASHBYTES SHA2_256 ║ 80210000 ║ 117080000 ║ 124790000 ║
║ CLR Spooky ║ 131250000 ║ 505700000 ║ 786150000 ║
║ CLR SpookyLOB ║ 17420000 ║ 27160000 ║ 31380000 ║
║ SQL# MD5 ║ 17080000 ║ 26450000 ║ 29080000 ║
║ SQL# SHA2_256 ║ 18370000 ║ 28860000 ║ 32590000 ║
║ SQL# MD5 8k ║ 24440000 ║ 30560000 ║ 32550000 ║
║ SQL# SHA2_256 8k ║ 87240000 ║ 159310000 ║ 155760000 ║
╚════════════════════╩════════════╩════════════╩════════════╝
Jeśli wolisz widzieć te same liczby mierzone pod względem pracy na sekundę wątku:
╔════════════════════╦════════════════════════════╦════════════════════════════╦════════════════════════════╗
║ Function ║ 12 threads per core-second ║ 48 threads per core-second ║ 84 threads per core-second ║
╠════════════════════╬════════════════════════════╬════════════════════════════╬════════════════════════════╣
║ CHECKSUM ║ 390625 ║ 389736 ║ 404782 ║
║ HASHBYTES MD5 ║ 105472 ║ 36872 ║ 22371 ║
║ HASHBYTES SHA2_256 ║ 111403 ║ 40653 ║ 24760 ║
║ CLR Spooky ║ 182292 ║ 175590 ║ 155982 ║
║ CLR SpookyLOB ║ 24194 ║ 9431 ║ 6226 ║
║ SQL# MD5 ║ 23722 ║ 9184 ║ 5770 ║
║ SQL# SHA2_256 ║ 25514 ║ 10021 ║ 6466 ║
║ SQL# MD5 8k ║ 33944 ║ 10611 ║ 6458 ║
║ SQL# SHA2_256 8k ║ 121167 ║ 55316 ║ 30905 ║
╚════════════════════╩════════════════════════════╩════════════════════════════╩════════════════════════════╝
Kilka szybkich przemyśleń na temat wszystkich metod:
CHECKSUM
: bardzo dobra skalowalność zgodnie z oczekiwaniami
HASHBYTES
: problemy ze skalowalnością obejmują jeden przydział pamięci na połączenie i dużą ilość procesora spędzonego w systemie operacyjnym
Spooky
: zaskakująco dobra skalowalność
Spooky LOB
: blokada SOS_SELIST_SIZED_SLOCK
obraca się spod kontroli. Podejrzewam, że jest to ogólny problem z przekazywaniem obiektów LOB przez funkcje CLR, ale nie jestem pewien
Util_HashBinary
: wygląda na to, że został trafiony przez tę samą blokadę. Do tej pory nie analizowałem tego, ponieważ prawdopodobnie nie mogę wiele z tym zrobić:
Util_HashBinary 8k
: bardzo zaskakujące wyniki, nie jestem pewien, co się tutaj dzieje
Ostateczne wyniki przetestowane na mniejszym serwerze:
╔═════════════════════════╦════════════════════════╦════════════════════════╗
║ Hash Algorithm ║ Hashes over 11 threads ║ Hashes over 44 threads ║
╠═════════════════════════╬════════════════════════╬════════════════════════╣
║ HASHBYTES SHA2_256 ║ 85220000 ║ 167050000 ║
║ SpookyHash ║ 101200000 ║ 239530000 ║
║ Util_HashSHA256Binary8k ║ 90590000 ║ 217170000 ║
║ SpookyHashLOB ║ 23490000 ║ 38370000 ║
║ Util_HashSHA256Binary ║ 23430000 ║ 36590000 ║
╚═════════════════════════╩════════════════════════╩════════════════════════╝
KOD BENCHMARKINGOWY
USTAWIENIA 1: Tabele i dane
DROP TABLE IF EXISTS dbo.HASH_SMALL;
CREATE TABLE dbo.HASH_SMALL (
ID BIGINT NOT NULL,
FK1 BIGINT NOT NULL,
FK2 BIGINT NOT NULL,
FK3 BIGINT NOT NULL,
FK4 BIGINT NOT NULL,
FK5 BIGINT NOT NULL,
FK6 BIGINT NOT NULL,
FK7 BIGINT NOT NULL,
FK8 BIGINT NOT NULL,
FK9 BIGINT NOT NULL,
FK10 BIGINT NOT NULL,
FK11 BIGINT NOT NULL,
FK12 BIGINT NOT NULL,
FK13 BIGINT NOT NULL,
FK14 BIGINT NOT NULL,
FK15 BIGINT NOT NULL,
FK16 BIGINT NOT NULL,
FK17 BIGINT NOT NULL,
FK18 BIGINT NOT NULL,
FK19 BIGINT NOT NULL,
FK20 BIGINT NOT NULL
);
INSERT INTO dbo.HASH_SMALL WITH (TABLOCK)
SELECT RN,
4000000 - RN, 4000000 - RN
,200000000 - RN, 200000000 - RN
, RN % 500000 , RN % 500000 , RN % 500000
, RN % 500000 , RN % 500000 , RN % 500000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
, 100000 - RN % 100000, RN % 100000
FROM (
SELECT TOP (10000) ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) RN
FROM master..spt_values t1
CROSS JOIN master..spt_values t2
) q
OPTION (MAXDOP 1);
DROP TABLE IF EXISTS dbo.LOG_HASHES;
CREATE TABLE dbo.LOG_HASHES (
LOG_TIME DATETIME,
HASH_ALGORITHM INT,
SESSION_ID INT,
NUM_HASHES BIGINT
);
SETUP 2: Master Execution Proc
GO
CREATE OR ALTER PROCEDURE dbo.RUN_HASHES_FOR_ONE_MINUTE (@HashAlgorithm INT)
AS
BEGIN
DECLARE @target_end_time DATETIME = DATEADD(MINUTE, 1, GETDATE()),
@query_execution_count INT = 0;
SET NOCOUNT ON;
DECLARE @ProcName NVARCHAR(261); -- schema_name + proc_name + '[].[]'
DECLARE @RowCount INT;
SELECT @RowCount = SUM(prtn.[row_count])
FROM sys.dm_db_partition_stats prtn
WHERE prtn.[object_id] = OBJECT_ID(N'dbo.HASH_SMALL')
AND prtn.[index_id] < 2;
-- Load assembly if not loaded to prevent load time from skewing results
DECLARE @OptionalInitSQL NVARCHAR(MAX);
SET @OptionalInitSQL = CASE @HashAlgorithm
WHEN 1 THEN N'SELECT @Dummy = dbo.SpookyHash(0x1234);'
WHEN 2 THEN N'' -- HASHBYTES
WHEN 3 THEN N'' -- HASHBYTES
WHEN 4 THEN N'' -- CHECKSUM
WHEN 5 THEN N'SELECT @Dummy = dbo.SpookyHashLOB(0x1234);'
WHEN 6 THEN N'SELECT @Dummy = SQL#.Util_HashBinary(N''MD5'', 0x1234);'
WHEN 7 THEN N'SELECT @Dummy = SQL#.Util_HashBinary(N''SHA256'', 0x1234);'
WHEN 8 THEN N'SELECT @Dummy = SQL#.Util_HashBinary8k(N''MD5'', 0x1234);'
WHEN 9 THEN N'SELECT @Dummy = SQL#.Util_HashBinary8k(N''SHA256'', 0x1234);'
/* -- BETA / non-public code
WHEN 10 THEN N'SELECT @Dummy = SQL#.Util_HashSHA256Binary8k(0x1234);'
WHEN 11 THEN N'SELECT @Dummy = SQL#.Util_HashSHA256Binary(0x1234);'
*/
END;
IF (RTRIM(@OptionalInitSQL) <> N'')
BEGIN
SET @OptionalInitSQL = N'
SET NOCOUNT ON;
DECLARE @Dummy VARBINARY(100);
' + @OptionalInitSQL;
RAISERROR(N'** Executing optional initialization code:', 10, 1) WITH NOWAIT;
RAISERROR(@OptionalInitSQL, 10, 1) WITH NOWAIT;
EXEC (@OptionalInitSQL);
RAISERROR(N'-------------------------------------------', 10, 1) WITH NOWAIT;
END;
SET @ProcName = CASE @HashAlgorithm
WHEN 1 THEN N'dbo.RUN_SpookyHash'
WHEN 2 THEN N'dbo.RUN_HASHBYTES_MD5'
WHEN 3 THEN N'dbo.RUN_HASHBYTES_SHA2_256'
WHEN 4 THEN N'dbo.RUN_CHECKSUM'
WHEN 5 THEN N'dbo.RUN_SpookyHashLOB'
WHEN 6 THEN N'dbo.RUN_SR_MD5'
WHEN 7 THEN N'dbo.RUN_SR_SHA256'
WHEN 8 THEN N'dbo.RUN_SR_MD5_8k'
WHEN 9 THEN N'dbo.RUN_SR_SHA256_8k'
/* -- BETA / non-public code
WHEN 10 THEN N'dbo.RUN_SR_SHA256_new'
WHEN 11 THEN N'dbo.RUN_SR_SHA256LOB_new'
*/
WHEN 13 THEN N'dbo.RUN_HASHBYTES_SHA2_256_NVC'
END;
RAISERROR(N'** Executing proc: %s', 10, 1, @ProcName) WITH NOWAIT;
WHILE GETDATE() < @target_end_time
BEGIN
EXEC @ProcName;
SET @query_execution_count = @query_execution_count + 1;
END;
INSERT INTO dbo.LOG_HASHES
VALUES (GETDATE(), @HashAlgorithm, @@SPID, @RowCount * @query_execution_count);
END;
GO
USTAWIENIA 3: Wykrywanie kolizji Proc
GO
CREATE OR ALTER PROCEDURE dbo.VERIFY_NO_COLLISIONS (@HashAlgorithm INT)
AS
SET NOCOUNT ON;
DECLARE @RowCount INT;
SELECT @RowCount = SUM(prtn.[row_count])
FROM sys.dm_db_partition_stats prtn
WHERE prtn.[object_id] = OBJECT_ID(N'dbo.HASH_SMALL')
AND prtn.[index_id] < 2;
DECLARE @CollisionTestRows INT;
DECLARE @CollisionTestSQL NVARCHAR(MAX);
SET @CollisionTestSQL = N'
SELECT @RowsOut = COUNT(DISTINCT '
+ CASE @HashAlgorithm
WHEN 1 THEN N'dbo.SpookyHash('
WHEN 2 THEN N'HASHBYTES(''MD5'','
WHEN 3 THEN N'HASHBYTES(''SHA2_256'','
WHEN 4 THEN N'CHECKSUM('
WHEN 5 THEN N'dbo.SpookyHashLOB('
WHEN 6 THEN N'SQL#.Util_HashBinary(N''MD5'','
WHEN 7 THEN N'SQL#.Util_HashBinary(N''SHA256'','
WHEN 8 THEN N'SQL#.[Util_HashBinary8k](N''MD5'','
WHEN 9 THEN N'SQL#.[Util_HashBinary8k](N''SHA256'','
--/* -- BETA / non-public code
WHEN 10 THEN N'SQL#.[Util_HashSHA256Binary8k]('
WHEN 11 THEN N'SQL#.[Util_HashSHA256Binary]('
--*/
END
+ N'
CAST(FK1 AS BINARY(8)) + 0x7C +
CAST(FK2 AS BINARY(8)) + 0x7C +
CAST(FK3 AS BINARY(8)) + 0x7C +
CAST(FK4 AS BINARY(8)) + 0x7C +
CAST(FK5 AS BINARY(8)) + 0x7C +
CAST(FK6 AS BINARY(8)) + 0x7C +
CAST(FK7 AS BINARY(8)) + 0x7C +
CAST(FK8 AS BINARY(8)) + 0x7C +
CAST(FK9 AS BINARY(8)) + 0x7C +
CAST(FK10 AS BINARY(8)) + 0x7C +
CAST(FK11 AS BINARY(8)) + 0x7C +
CAST(FK12 AS BINARY(8)) + 0x7C +
CAST(FK13 AS BINARY(8)) + 0x7C +
CAST(FK14 AS BINARY(8)) + 0x7C +
CAST(FK15 AS BINARY(8)) + 0x7C +
CAST(FK16 AS BINARY(8)) + 0x7C +
CAST(FK17 AS BINARY(8)) + 0x7C +
CAST(FK18 AS BINARY(8)) + 0x7C +
CAST(FK19 AS BINARY(8)) + 0x7C +
CAST(FK20 AS BINARY(8)) ))
FROM dbo.HASH_SMALL;';
PRINT @CollisionTestSQL;
EXEC sp_executesql
@CollisionTestSQL,
N'@RowsOut INT OUTPUT',
@RowsOut = @CollisionTestRows OUTPUT;
IF (@CollisionTestRows <> @RowCount)
BEGIN
RAISERROR('Collisions for algorithm: %d!!! %d unique rows out of %d.',
16, 1, @HashAlgorithm, @CollisionTestRows, @RowCount);
END;
GO
SETUP 4: Cleanup (DROP All Test Procs)
DECLARE @SQL NVARCHAR(MAX) = N'';
SELECT @SQL += N'DROP PROCEDURE [dbo].' + QUOTENAME(sp.[name])
+ N';' + NCHAR(13) + NCHAR(10)
FROM sys.objects sp
WHERE sp.[name] LIKE N'RUN[_]%'
AND sp.[type_desc] = N'SQL_STORED_PROCEDURE'
AND sp.[name] <> N'RUN_HASHES_FOR_ONE_MINUTE'
PRINT @SQL;
EXEC (@SQL);
USTAWIENIA 5: Generowanie wyników testu
SET NOCOUNT ON;
DECLARE @TestProcsToCreate TABLE
(
ProcName sysname NOT NULL,
CodeToExec NVARCHAR(261) NOT NULL
);
DECLARE @ProcName sysname,
@CodeToExec NVARCHAR(261);
INSERT INTO @TestProcsToCreate VALUES
(N'SpookyHash', N'dbo.SpookyHash('),
(N'HASHBYTES_MD5', N'HASHBYTES(''MD5'','),
(N'HASHBYTES_SHA2_256', N'HASHBYTES(''SHA2_256'','),
(N'CHECKSUM', N'CHECKSUM('),
(N'SpookyHashLOB', N'dbo.SpookyHashLOB('),
(N'SR_MD5', N'SQL#.Util_HashBinary(N''MD5'','),
(N'SR_SHA256', N'SQL#.Util_HashBinary(N''SHA256'','),
(N'SR_MD5_8k', N'SQL#.[Util_HashBinary8k](N''MD5'','),
(N'SR_SHA256_8k', N'SQL#.[Util_HashBinary8k](N''SHA256'',')
--/* -- BETA / non-public code
, (N'SR_SHA256_new', N'SQL#.[Util_HashSHA256Binary8k]('),
(N'SR_SHA256LOB_new', N'SQL#.[Util_HashSHA256Binary](');
--*/
DECLARE @ProcTemplate NVARCHAR(MAX),
@ProcToCreate NVARCHAR(MAX);
SET @ProcTemplate = N'
CREATE OR ALTER PROCEDURE dbo.RUN_{{ProcName}}
AS
BEGIN
DECLARE @dummy INT;
SET NOCOUNT ON;
SELECT @dummy = COUNT({{CodeToExec}}
CAST(FK1 AS BINARY(8)) + 0x7C +
CAST(FK2 AS BINARY(8)) + 0x7C +
CAST(FK3 AS BINARY(8)) + 0x7C +
CAST(FK4 AS BINARY(8)) + 0x7C +
CAST(FK5 AS BINARY(8)) + 0x7C +
CAST(FK6 AS BINARY(8)) + 0x7C +
CAST(FK7 AS BINARY(8)) + 0x7C +
CAST(FK8 AS BINARY(8)) + 0x7C +
CAST(FK9 AS BINARY(8)) + 0x7C +
CAST(FK10 AS BINARY(8)) + 0x7C +
CAST(FK11 AS BINARY(8)) + 0x7C +
CAST(FK12 AS BINARY(8)) + 0x7C +
CAST(FK13 AS BINARY(8)) + 0x7C +
CAST(FK14 AS BINARY(8)) + 0x7C +
CAST(FK15 AS BINARY(8)) + 0x7C +
CAST(FK16 AS BINARY(8)) + 0x7C +
CAST(FK17 AS BINARY(8)) + 0x7C +
CAST(FK18 AS BINARY(8)) + 0x7C +
CAST(FK19 AS BINARY(8)) + 0x7C +
CAST(FK20 AS BINARY(8))
)
)
FROM dbo.HASH_SMALL
OPTION (MAXDOP 1);
END;
';
DECLARE CreateProcsCurs CURSOR READ_ONLY FORWARD_ONLY LOCAL FAST_FORWARD
FOR SELECT [ProcName], [CodeToExec]
FROM @TestProcsToCreate;
OPEN [CreateProcsCurs];
FETCH NEXT
FROM [CreateProcsCurs]
INTO @ProcName, @CodeToExec;
WHILE (@@FETCH_STATUS = 0)
BEGIN
-- First: create VARBINARY version
SET @ProcToCreate = REPLACE(REPLACE(@ProcTemplate,
N'{{ProcName}}',
@ProcName),
N'{{CodeToExec}}',
@CodeToExec);
EXEC (@ProcToCreate);
-- Second: create NVARCHAR version (optional: built-ins only)
IF (CHARINDEX(N'.', @CodeToExec) = 0)
BEGIN
SET @ProcToCreate = REPLACE(REPLACE(REPLACE(@ProcToCreate,
N'dbo.RUN_' + @ProcName,
N'dbo.RUN_' + @ProcName + N'_NVC'),
N'BINARY(8)',
N'NVARCHAR(15)'),
N'0x7C',
N'N''|''');
EXEC (@ProcToCreate);
END;
FETCH NEXT
FROM [CreateProcsCurs]
INTO @ProcName, @CodeToExec;
END;
CLOSE [CreateProcsCurs];
DEALLOCATE [CreateProcsCurs];
TEST 1: Sprawdź, czy nie ma kolizji
EXEC dbo.VERIFY_NO_COLLISIONS 1;
EXEC dbo.VERIFY_NO_COLLISIONS 2;
EXEC dbo.VERIFY_NO_COLLISIONS 3;
EXEC dbo.VERIFY_NO_COLLISIONS 4;
EXEC dbo.VERIFY_NO_COLLISIONS 5;
EXEC dbo.VERIFY_NO_COLLISIONS 6;
EXEC dbo.VERIFY_NO_COLLISIONS 7;
EXEC dbo.VERIFY_NO_COLLISIONS 8;
EXEC dbo.VERIFY_NO_COLLISIONS 9;
EXEC dbo.VERIFY_NO_COLLISIONS 10;
EXEC dbo.VERIFY_NO_COLLISIONS 11;
TEST 2: Uruchom testy wydajności
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 1;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 2;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 3; -- HASHBYTES('SHA2_256'
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 4;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 5;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 6;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 7;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 8;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 9;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 10;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 11;
EXEC dbo.RUN_HASHES_FOR_ONE_MINUTE 13; -- NVC version of #3
SELECT *
FROM dbo.LOG_HASHES
ORDER BY [LOG_TIME] DESC;
KWESTIE WALIDACJI DO ROZWIĄZANIA
Koncentrując się na testowaniu wydajności pojedynczej SQLCLR UDF, dwie kwestie, które zostały wcześniej omówione, nie zostały włączone do testów, ale najlepiej powinny zostać zbadane w celu ustalenia, które podejście spełnia wszystkie wymagania.
- Funkcja będzie wykonywana dwukrotnie dla każdego zapytania (raz dla wiersza importu i raz dla bieżącego wiersza). Dotychczasowe testy odwoływały się do UDF tylko raz w zapytaniach testowych. Ten czynnik może nie zmienić rankingu opcji, ale na wszelki wypadek nie powinien być ignorowany.
W komentarzu, który został usunięty, Paul White wspomniał:
Wadą zastąpienia HASHBYTES
funkcji skalarnej CLR - wydaje się, że funkcje CLR nie mogą korzystać z trybu wsadowego, podczas gdy HASHBYTES
mogą. To może być ważne pod względem wydajności.
Jest to więc kwestia do rozważenia i wyraźnie wymaga testowania. Jeśli opcje SQLCLR nie zapewniają żadnej korzyści w porównaniu z wbudowanym HASHBYTES
, to zwiększa wagę sugestii Solomona o przechwytywaniu istniejących skrótów (dla co najmniej największych tabel) do powiązanych tabel.
Clear()
metodę, ale nie zajrzałem tak daleko w Spooky.SHA256Managed
aSpookyHashV2
, ale to próbowałem i nie zobaczyć wiele, jeśli w ogóle, poprawę wydajności. Zauważyłem również, żeManagedThreadId
wartość jest taka sama dla wszystkich referencji SQLCLR w określonym zapytaniu. Testowałem wiele odniesień do tej samej funkcji, a także odwołanie do innej funkcji, wszystkie 3 mają różne wartości wejściowe i zwracają różne (ale oczekiwane) wartości zwracane. Czy nie zwiększyłoby to szans na warunki wyścigowe? Szczerze mówiąc, w moim teście nie widziałem żadnego.