To zapytanie zawiera listę postów utworzonych przez osoby, które obserwujesz. Możesz śledzić nieograniczoną liczbę osób, ale większość osób śledzi <1000 innych.
Przy takim stylu zapytań oczywistą optymalizacją byłoby buforowanie "Post"
identyfikatorów, ale niestety nie mam teraz na to czasu.
EXPLAIN ANALYZE SELECT
"Post"."id",
"Post"."actionId",
"Post"."commentCount",
...
FROM
"Posts" AS "Post"
INNER JOIN "Users" AS "user" ON "Post"."userId" = "user"."id"
LEFT OUTER JOIN "ActivityLogs" AS "activityLog" ON "Post"."activityLogId" = "activityLog"."id"
LEFT OUTER JOIN "WeightLogs" AS "weightLog" ON "Post"."weightLogId" = "weightLog"."id"
LEFT OUTER JOIN "Workouts" AS "workout" ON "Post"."workoutId" = "workout"."id"
LEFT OUTER JOIN "WorkoutLogs" AS "workoutLog" ON "Post"."workoutLogId" = "workoutLog"."id"
LEFT OUTER JOIN "Workouts" AS "workoutLog.workout" ON "workoutLog"."workoutId" = "workoutLog.workout"."id"
WHERE
"Post"."userId" IN (
201486,
1825186,
998608,
340844,
271909,
308218,
341986,
216893,
1917226,
... -- many more
)
AND "Post"."private" IS NULL
ORDER BY
"Post"."createdAt" DESC
LIMIT 10;
Wydajność:
Limit (cost=3.01..4555.20 rows=10 width=2601) (actual time=7923.011..7973.138 rows=10 loops=1)
-> Nested Loop Left Join (cost=3.01..9019264.02 rows=19813 width=2601) (actual time=7923.010..7973.133 rows=10 loops=1)
-> Nested Loop Left Join (cost=2.58..8935617.96 rows=19813 width=2376) (actual time=7922.995..7973.063 rows=10 loops=1)
-> Nested Loop Left Join (cost=2.15..8821537.89 rows=19813 width=2315) (actual time=7922.984..7961.868 rows=10 loops=1)
-> Nested Loop Left Join (cost=1.71..8700662.11 rows=19813 width=2090) (actual time=7922.981..7961.846 rows=10 loops=1)
-> Nested Loop Left Join (cost=1.29..8610743.68 rows=19813 width=2021) (actual time=7922.977..7961.816 rows=10 loops=1)
-> Nested Loop (cost=0.86..8498351.81 rows=19813 width=1964) (actual time=7922.972..7960.723 rows=10 loops=1)
-> Index Scan using posts_createdat_public_index on "Posts" "Post" (cost=0.43..8366309.39 rows=20327 width=261) (actual time=7922.869..7960.509 rows=10 loops=1)
Filter: ("userId" = ANY ('{201486,1825186,998608,340844,271909,308218,341986,216893,1917226, ... many more ...}'::integer[]))
Rows Removed by Filter: 218360
-> Index Scan using "Users_pkey" on "Users" "user" (cost=0.43..6.49 rows=1 width=1703) (actual time=0.005..0.006 rows=1 loops=10)
Index Cond: (id = "Post"."userId")
-> Index Scan using "ActivityLogs_pkey" on "ActivityLogs" "activityLog" (cost=0.43..5.66 rows=1 width=57) (actual time=0.107..0.107 rows=0 loops=10)
Index Cond: ("Post"."activityLogId" = id)
-> Index Scan using "WeightLogs_pkey" on "WeightLogs" "weightLog" (cost=0.42..4.53 rows=1 width=69) (actual time=0.001..0.001 rows=0 loops=10)
Index Cond: ("Post"."weightLogId" = id)
-> Index Scan using "Workouts_pkey" on "Workouts" workout (cost=0.43..6.09 rows=1 width=225) (actual time=0.001..0.001 rows=0 loops=10)
Index Cond: ("Post"."workoutId" = id)
-> Index Scan using "WorkoutLogs_pkey" on "WorkoutLogs" "workoutLog" (cost=0.43..5.75 rows=1 width=61) (actual time=1.118..1.118 rows=0 loops=10)
Index Cond: ("Post"."workoutLogId" = id)
-> Index Scan using "Workouts_pkey" on "Workouts" "workoutLog.workout" (cost=0.43..4.21 rows=1 width=225) (actual time=0.004..0.004 rows=0 loops=10)
Index Cond: ("workoutLog"."workoutId" = id)
Total runtime: 7974.524 ms
Jak można to na razie zoptymalizować?
Mam następujące odpowiednie indeksy:
-- Gets used
CREATE INDEX "posts_createdat_public_index" ON "public"."Posts" USING btree("createdAt" DESC) WHERE "private" IS null;
-- Don't get used
CREATE INDEX "posts_userid_fk_index" ON "public"."Posts" USING btree("userId");
CREATE INDEX "posts_following_index" ON "public"."Posts" USING btree("userId", "createdAt" DESC) WHERE "private" IS null;
Być może wymaga to dużego częściowego indeksu kompozytowego z createdAt
i userId
gdzie private IS NULL
?