Konwertuj stos raserów czasowych GTiff na pojedynczy NetCDF

12

Przejście z listy mailingowej gdal-dev:

W poniedziałek, 2 września 2013 o 19:09, David Shean napisał:

Cześć lista, próbuję spakować rastry GTiff o identycznej projekcji / zasięgu / rozdzielczości jak pojedynczy plik NetCDF do dystrybucji. Spędziłem ostatnią godzinę konsultując się z internetowym dokumentem i grając bez żadnych sukcesów z gdal_translate, gdalbuildvrt i gdalwarp.

Czy istnieje prosty sposób, aby to zrobić za pomocą istniejących narzędzi wiersza poleceń gdal? Pomyślałem, że zapytam przed skorzystaniem z niestandardowego rozwiązania korzystającego z interfejsu API NetCDF Python.

Dzięki. -David

W wtorek, 3 września 2013 o 10:15, Etienne Tourigny napisała:

to, czego chcesz, prawdopodobnie wykracza poza zakres gdal. Wymagałoby to sprytnego zarządzania metadanymi, aby gdal_translate umieścił je w jednym pliku ...

Radzę przekonwertować je wszystkie na netcdf za pomocą gdal_translate, a następnie użyć python-netcdf4 (nie ten z numpy / scipy), aby ułożyć je w stos czasowy.

W wtorek, 3 września 2013 r., O godzinie 07:55, „Signell, Richard” napisał:

David, jeśli opublikujesz swoje pytanie w grupie GIS stackexchange /gis//, podam przykładowy kod, który powinien być pomocny.

-Bogaty

====================

Aktualizacja 9/3/13 17:04 PDT

Oto dane wyjściowe gdalinfo dla jednego z moich wejściowych zestawów danych:


gdalinfo 20120901T2024_align_x+22.19_y+3.68_z+14.97_warp.tif

Driver: GTiff/GeoTIFF
Files: 20120901T2024_align_x+22.19_y+3.68_z+14.97_warp.tif
Size is 10666, 13387
Coordinate System is:
PROJCS["unnamed",
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
                AUTHORITY["EPSG","7030"]],
            AUTHORITY["EPSG","6326"]],
        PRIMEM["Greenwich",0],
        UNIT["degree",0.0174532925199433],
        AUTHORITY["EPSG","4326"]],
    PROJECTION["Polar_Stereographic"],
    PARAMETER["latitude_of_origin",70],
    PARAMETER["central_meridian",-45],
    PARAMETER["scale_factor",1],
    PARAMETER["false_easting",0],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]]]
Origin = (-211346.063781524338992,-2245136.291794800199568)
Pixel Size = (5.000000000000000,-5.000000000000000)
Metadata:
  AREA_OR_POINT=Area
Image Structure Metadata:
  COMPRESSION=LZW
  INTERLEAVE=BAND
Corner Coordinates:
Upper Left  ( -211346.064,-2245136.292) ( 50d22'39.70"W, 69d23'55.59"N)
Lower Left  ( -211346.064,-2312071.292) ( 50d13'22.38"W, 68d48'10.75"N)
Upper Right ( -158016.064,-2245136.292) ( 49d 1'33.33"W, 69d26'16.42"N)
Lower Right ( -158016.064,-2312071.292) ( 48d54'35.06"W, 68d50'27.28"N)
Center      ( -184681.064,-2278603.792) ( 49d38' 1.32"W, 69d 7'17.04"N)
Band 1 Block=256x256 Type=Float32, ColorInterp=Gray
  NoData Value=-32767

Kontynuacja sugerowanego podejścia Luke'a.

Generacja VRR działa dobrze:

gdalbuildvrt -separate newtest.vrt *warp.tif

<VRTDataset rasterXSize="10666" rasterYSize="13387">
  <SRS>PROJCS["unnamed",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],AUTHORITY["EPSG","4326"]],PROJECTION["Polar_Stereographic"],PARAMETER["latitude_of_origin",70],PARAMETER["central_meridian",-45],PARAMETER["scale_factor",1],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]]]</SRS>
  <GeoTransform> -2.1134606378152434e+05,  5.0000000000000000e+00,  0.0000000000000000e+00, -2.2451362917948002e+06,  0.0000000000000000e+00, -5.0000000000000000e+00</GeoTransform>
  <VRTRasterBand dataType="Float32" band="1">
    <NoDataValue>-3.27670000000000E+04</NoDataValue>
    <ComplexSource>
      <SourceFilename relativeToVRT="1">20110619T2024_align_x+15.51_y+1.15_z+12.10_warp.tif</SourceFilename>
      <SourceBand>1</SourceBand>
      <SourceProperties RasterXSize="10666" RasterYSize="13387" DataType="Float32" BlockXSize="256" BlockYSize="256" />
      <SrcRect xOff="0" yOff="0" xSize="10666" ySize="13387" />
      <DstRect xOff="0" yOff="0" xSize="10666" ySize="13387" />
      <NODATA>-32767</NODATA>
    </ComplexSource>
  </VRTRasterBand>
  <VRTRasterBand dataType="Float32" band="2">
    <NoDataValue>-3.27670000000000E+04</NoDataValue>
    <ComplexSource>
      <SourceFilename relativeToVRT="1">20110802T2024_align_x+16.33_y+2.14_z+12.02_warp.tif</SourceFilename>
      <SourceBand>1</SourceBand>
      <SourceProperties RasterXSize="10666" RasterYSize="13387" DataType="Float32" BlockXSize="256" BlockYSize="256" />
      <SrcRect xOff="0" yOff="0" xSize="10666" ySize="13387" />
      <DstRect xOff="0" yOff="0" xSize="10666" ySize="13387" />
      <NODATA>-32767</NODATA>
    </ComplexSource>
  </VRTRasterBand>
...

Ale kiedy próbuję przetłumaczyć na nc, pojawia się następujący błąd:


gdal_translate -of netcdf newtest.vrt newtest.nc

Input file size is 10666, 13387
Warning 1: Variable has 0 dimension(s) - not supported.
0...10...20...30...40...50ERROR 1: netcdf error #-62 : NetCDF: One or more variable sizes violate format constraints .
at (netcdfdataset.cpp,SetDefineMode,1574)

ERROR 1: netcdf error #-39 : NetCDF: Operation not allowed in define mode .
at (netcdfdataset.cpp,IWriteBlock,1435)

ERROR 1: netCDF scanline write failed: NetCDF: Operation not allowed in define mode
ERROR 1: An error occured while writing a dirty block
...ERROR 1: netcdf error #-39 : NetCDF: Operation not allowed in define mode .
at (netcdfdataset.cpp,IWriteBlock,1435)

ERROR 1: netCDF scanline write failed: NetCDF: Operation not allowed in define mode
ERROR 1: netcdf error #-62 : NetCDF: One or more variable sizes violate format constraints .
at (netcdfdataset.cpp,~netCDFDataset,1548)

Po bliższym przyjrzeniu się wydaje się, że gdal nie jest zadowolona z polarnej stereograficznej projekcji, której używam (EPSG: 3413). Zobacz wiersze 1570-1582 pliku netcdfdataset.cpp:

https://code.vpac.org/gitorious/gdal-netcdf-testing/gdal-netcdf-driver/blobs/8fa3582669969ad4d55e461f5846b3ed33727f63/gdal/frmts/netcdf/netcdfdataset.cpp

Moja projekcja ma określoną szerokość geograficzną, ale nie ma żadnych standardowych podobieństw, zgodnie z oczekiwaniami sterownika netcdf.

David Shean
źródło
1
Jaka wersja GDAL? Wprowadzono szereg zmian w sterowniku NetCDF w GDAL> = 1.9.0. Ta strona w szczególności wspomina o zmianach w obsłudze polarnych projekcji stereograficznych. Możesz obejść ten problem, nadpisując projekcję parametrem gdal_translate -a_srs i określając poprawny, ale równoważny ciąg projekcji. Zobacz także ( trac.osgeo.org/gdal/wiki/NetCDF_ProjectionTestingStatus )
użytkownik2856
gdalinfo --wersja GDAL 1.11dev, wydany 2013/04/13
David Shean
1
Podziękowania zarówno dla Richa, jak i Luke'a za pomocny wkład. Muszę zaktualizować do najnowszej wersji GDAL, ocenić najnowszą funkcjonalność polarograficzną sterownika netcdf i skontaktować się z gdal-dev w sprawie wszelkich problemów z utrzymaniem się. Chociaż obie odpowiedzi zadziałają, podoba mi się przepis Richa i dostosuję się do własnych celów. Wiem, że inni uznają tę dyskusję za przydatną - cieszę się, że została zarchiwizowana na SE.
David Shean,

Odpowiedzi:

22

Oto kod Pythona, który robi to, co chcesz, odczytując pliki GDAL, które reprezentują dane w określonym czasie i zapisując w jednym pliku NetCDF, który jest zgodny z CF

#!/usr/bin/env python
'''
Convert a bunch of GDAL readable grids to a NetCDF Time Series.
Here we read a bunch of files that have names like:
/usgs/data0/prism/1890-1899/us_tmin_1895.01
/usgs/data0/prism/1890-1899/us_tmin_1895.02
...
/usgs/data0/prism/1890-1899/us_tmin_1895.12
'''

import numpy as np
import datetime as dt
import os
import gdal
import netCDF4
import re

ds = gdal.Open('/usgs/data0/prism/1890-1899/us_tmin_1895.01')
a = ds.ReadAsArray()
nlat,nlon = np.shape(a)

b = ds.GetGeoTransform() #bbox, interval
lon = np.arange(nlon)*b[1]+b[0]
lat = np.arange(nlat)*b[5]+b[3]


basedate = dt.datetime(1858,11,17,0,0,0)

# create NetCDF file
nco = netCDF4.Dataset('time_series.nc','w',clobber=True)

# chunking is optional, but can improve access a lot: 
# (see: http://www.unidata.ucar.edu/blogs/developer/entry/chunking_data_choosing_shapes)
chunk_lon=16
chunk_lat=16
chunk_time=12

# create dimensions, variables and attributes:
nco.createDimension('lon',nlon)
nco.createDimension('lat',nlat)
nco.createDimension('time',None)
timeo = nco.createVariable('time','f4',('time'))
timeo.units = 'days since 1858-11-17 00:00:00'
timeo.standard_name = 'time'

lono = nco.createVariable('lon','f4',('lon'))
lono.units = 'degrees_east'
lono.standard_name = 'longitude'

lato = nco.createVariable('lat','f4',('lat'))
lato.units = 'degrees_north'
lato.standard_name = 'latitude'

# create container variable for CRS: lon/lat WGS84 datum
crso = nco.createVariable('crs','i4')
csro.long_name = 'Lon/Lat Coords in WGS84'
crso.grid_mapping_name='latitude_longitude'
crso.longitude_of_prime_meridian = 0.0
crso.semi_major_axis = 6378137.0
crso.inverse_flattening = 298.257223563

# create short integer variable for temperature data, with chunking
tmno = nco.createVariable('tmn', 'i2',  ('time', 'lat', 'lon'), 
   zlib=True,chunksizes=[chunk_time,chunk_lat,chunk_lon],fill_value=-9999)
tmno.units = 'degC'
tmno.scale_factor = 0.01
tmno.add_offset = 0.00
tmno.long_name = 'minimum monthly temperature'
tmno.standard_name = 'air_temperature'
tmno.grid_mapping = 'crs'
tmno.set_auto_maskandscale(False)

nco.Conventions='CF-1.6'

#write lon,lat
lono[:]=lon
lato[:]=lat

pat = re.compile('us_tmin_[0-9]{4}\.[0-9]{2}')
itime=0

#step through data, writing time and data to NetCDF
for root, dirs, files in os.walk('/usgs/data0/prism/1890-1899/'):
    dirs.sort()
    files.sort()
    for f in files:
        if re.match(pat,f):
            # read the time values by parsing the filename
            year=int(f[8:12])
            mon=int(f[13:15])
            date=dt.datetime(year,mon,1,0,0,0)
            print(date)
            dtime=(date-basedate).total_seconds()/86400.
            timeo[itime]=dtime
           # min temp
            tmn_path = os.path.join(root,f)
            print(tmn_path)
            tmn=gdal.Open(tmn_path)
            a=tmn.ReadAsArray()  #data
            tmno[itime,:,:]=a
            itime=itime+1

nco.close()

Python GDAL i NetCDF4 może być trochę trudny do zbudowania, ale dobrą wiadomością jest to, że są częścią większości naukowych dystrybucji python (Python (x, y), Enthought Python Distribution, Anaconda, ...)

Aktualizacja: Nie robiłem jeszcze stereografii biegunowej w NetCDF zgodnym z CF, ale powinienem wyglądać mniej więcej tak. Tutaj założyłem, że central_meridianiw latitude_of_originGDAL są takie same jak straight_vertical_longitude_from_poleiw latitude_of_projection_originCF:

#!/usr/bin/env python
'''
Convert a bunch of GDAL readable grids to a NetCDF Time Series.
Here we read a bunch of files that have names like:
/usgs/data0/prism/1890-1899/us_tmin_1895.01
/usgs/data0/prism/1890-1899/us_tmin_1895.02
...
/usgs/data0/prism/1890-1899/us_tmin_1895.12
'''

import numpy as np
import datetime as dt
import os
import gdal
import netCDF4
import re

ds = gdal.Open('/usgs/data0/prism/1890-1899/us_tmin_1895.01')
a = ds.ReadAsArray()
ny,nx = np.shape(a)

b = ds.GetGeoTransform() #bbox, interval
x = np.arange(nx)*b[1]+b[0]
y = np.arange(ny)*b[5]+b[3]


basedate = dt.datetime(1858,11,17,0,0,0)

# create NetCDF file
nco = netCDF4.Dataset('time_series.nc','w',clobber=True)

# chunking is optional, but can improve access a lot: 
# (see: http://www.unidata.ucar.edu/blogs/developer/entry/chunking_data_choosing_shapes)
chunk_x=16
chunk_y=16
chunk_time=12

# create dimensions, variables and attributes:
nco.createDimension('x',nx)
nco.createDimension('y',ny)
nco.createDimension('time',None)
timeo = nco.createVariable('time','f4',('time'))
timeo.units = 'days since 1858-11-17 00:00:00'
timeo.standard_name = 'time'

xo = nco.createVariable('x','f4',('x'))
xo.units = 'm'
xo.standard_name = 'projection_x_coordinate'

yo = nco.createVariable('y','f4',('y'))
yo.units = 'm'
yo.standard_name = 'projection_y_coordinate'

# create container variable for CRS: x/y WGS84 datum
crso = nco.createVariable('crs','i4')
crso.grid_mapping_name='polar_stereographic'
crso.straight_vertical_longitude_from_pole = -45.
crso.latitude_of_projection_origin = 70.
crso.scale_factor_at_projection_origin = 1.0
crso.false_easting = 0.0
crso.false_northing = 0.0
crso.semi_major_axis = 6378137.0
crso.inverse_flattening = 298.257223563

# create short integer variable for temperature data, with chunking
tmno = nco.createVariable('tmn', 'i2',  ('time', 'y', 'x'), 
   zlib=True,chunksizes=[chunk_time,chunk_y,chunk_x],fill_value=-9999)
tmno.units = 'degC'
tmno.scale_factor = 0.01
tmno.add_offset = 0.00
tmno.long_name = 'minimum monthly temperature'
tmno.standard_name = 'air_temperature'
tmno.grid_mapping = 'crs'
tmno.set_auto_maskandscale(False)

nco.Conventions='CF-1.6'

#write x,y
xo[:]=x
yo[:]=y

pat = re.compile('us_tmin_[0-9]{4}\.[0-9]{2}')
itime=0

#step through data, writing time and data to NetCDF
for root, dirs, files in os.walk('/usgs/data0/prism/1890-1899/'):
    dirs.sort()
    files.sort()
    for f in files:
        if re.match(pat,f):
            # read the time values by parsing the filename
            year=int(f[8:12])
            mon=int(f[13:15])
            date=dt.datetime(year,mon,1,0,0,0)
            print(date)
            dtime=(date-basedate).total_seconds()/86400.
            timeo[itime]=dtime
           # min temp
            tmn_path = os.path.join(root,f)
            print(tmn_path)
            tmn=gdal.Open(tmn_path)
            a=tmn.ReadAsArray()  #data
            tmno[itime,:,:]=a
            itime=itime+1

nco.close()
Rich Signell
źródło
Świetny kod bogaty! Jest to bardzo przydatne i wykorzystam to w przyszłości. Wygląda na to, że twoja projekcja wejściowa jest zakładana w geograficznych jednostkach geograficznych lat / lon (EPSG: 4326). Pracuję z danymi o wysokiej rozdzielczości na szerokościach biegunowych, więc nie jest to idealne, ale spróbuję przekonwertować na WGS84.
David Shean,
lat / lon był tylko przykładem. Możesz użyć, co chcesz. Do jakich aplikacji kierujesz reklamy? ArcGIS, tylko do archiwizacji czy co?
Rich Signell,
Cóż, mam wiele takich szeregów czasowych i oceniam opcje wydajnego przechowywania i analizy. Ale w tej chwili pakuję dane do spożycia przez modele przepływu. Społeczność zajmująca się modelowaniem, przynajmniej modelowanie przepływu lodu, wydaje się lubić netcdf.
David Shean,
Czy istnieje adres URL, pod którym możemy znaleźć próbkę tych danych?
Rich Signell,
Niestety nie mogę rozpowszechniać w tym momencie, ale są plany archiwizacji w przyszłości.
David Shean,
2

Łatwo jest umieścić je w jednym NetCDF z narzędziami GDAL, przykład poniżej. Ale nie otrzymujesz wymiaru czasowego / innych metadanych odpowiedzi @ RichSignell. Tiffy zostają po prostu wrzucone do subdanych.

C:\remotesensing\testdata>dir /b ndvi*.tif
ndvi1.tif
ndvi2.tif
ndvi3.tif

C:\remotesensing\testdata>gdalbuildvrt -separate ndvi.vrt ndvi*.tif
0...10...20...30...40...50...60...70...80...90...100 - done.

C:\remotesensing\testdata>gdal_translate -of netcdf ndvi.vrt ndvi.nc
Input file size is 96, 88
0...10...20...30...40...50...60...70...80...90...100 - done.

C:\remotesensing\testdata>gdalinfo ndvi.nc
Driver: netCDF/Network Common Data Format
Files: ndvi.nc
Size is 512, 512
Coordinate System is `'
Metadata:
  NC_GLOBAL#Conventions=CF-1.5
  NC_GLOBAL#GDAL=GDAL 1.10.0, released 2013/04/24
  NC_GLOBAL#history=Wed Sep 04 09:49:11 2013: GDAL CreateCopy( ndvi.nc, ... )
Subdatasets:
  SUBDATASET_1_NAME=NETCDF:"ndvi.nc":Band1
  SUBDATASET_1_DESC=[88x96] Band1 (32-bit floating-point)
  SUBDATASET_2_NAME=NETCDF:"ndvi.nc":Band2
  SUBDATASET_2_DESC=[88x96] Band2 (32-bit floating-point)
  SUBDATASET_3_NAME=NETCDF:"ndvi.nc":Band3
  SUBDATASET_3_DESC=[88x96] Band3 (32-bit floating-point)
Corner Coordinates:
Upper Left  (    0.0,    0.0)
Lower Left  (    0.0,  512.0)
Upper Right (  512.0,    0.0)
Lower Right (  512.0,  512.0)
Center      (  256.0,  256.0)

C:\remotesensing\testdata>gdalinfo NETCDF:"ndvi.nc":Band1
Driver: netCDF/Network Common Data Format
Files: ndvi.nc
Size is 96, 88
Coordinate System is:
GEOGCS["GCS_GDA_1994",
    DATUM["Geocentric_Datum_of_Australia_1994",
        SPHEROID["GRS 1980",6378137,298.2572221010002,
            AUTHORITY["EPSG","7019"]],
        AUTHORITY["EPSG","6283"]],
    PRIMEM["Greenwich",0],
    UNIT["degree",0.0174532925199433]]
Origin = (115.810500000000000,-32.260249999999999)
Pixel Size = (0.000250000000000,-0.000250000000000)
Metadata:
  Band1#_FillValue=0
  Band1#grid_mapping=crs
  Band1#long_name=GDAL Band Number 1
  crs#GeoTransform=115.8105 0.00025 0 -32.26025 0 -0.00025
  crs#grid_mapping_name=latitude_longitude
  crs#inverse_flattening=298.2572221010002
  crs#longitude_of_prime_meridian=0
  crs#semi_major_axis=6378137
  crs#spatial_ref=GEOGCS["GCS_GDA_1994",DATUM["Geocentric_Datum_of_Australia_1994",SPHEROID["GRS 1980",6378137,298.2572221010002,AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","6283"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433]]
  lat#long_name=latitude
  lat#standard_name=latitude
  lat#units=degrees_north
  lon#long_name=longitude
  lon#standard_name=longitude
  lon#units=degrees_east
  NC_GLOBAL#Conventions=CF-1.5
  NC_GLOBAL#GDAL=GDAL 1.10.0, released 2013/04/24
  NC_GLOBAL#history=Wed Sep 04 09:49:11 2013: GDAL CreateCopy( ndvi.nc, ... )
Corner Coordinates:
Upper Left  ( 115.8105000, -32.2602500) (115d48'37.80"E, 32d15'36.90"S)
Lower Left  ( 115.8105000, -32.2822500) (115d48'37.80"E, 32d16'56.10"S)
Upper Right ( 115.8345000, -32.2602500) (115d50' 4.20"E, 32d15'36.90"S)
Lower Right ( 115.8345000, -32.2822500) (115d50' 4.20"E, 32d16'56.10"S)
Center      ( 115.8225000, -32.2712500) (115d49'21.00"E, 32d16'16.50"S)
Band 1 Block=96x1 Type=Float32, ColorInterp=Undefined
  NoData Value=0
  Metadata:
    _FillValue=0
    grid_mapping=crs
    long_name=GDAL Band Number 1
    NETCDF_VARNAME=Band1
użytkownik2856
źródło
Wypróbowałem to podejście i nie powiodło się dla moich danych wejściowych - opublikuję wynik powyżej.
David Shean,
Jako test użyłem gdalwarp, aby ponownie zaprojektować wielopasmowy vrt EPSG: 3413 na EPSG: 4326, a następnie użyłem gdal_translate do konwersji na netcdf4. Jak sugeruje Łukasz, działa to bez problemu. Jak zasugerował Etienne w oryginalnym wątku gdal-dev, w tym podejściu kontrola metadanych jest ograniczona.
David Shean,