Chciałbym dowiedzieć się więcej o klasach złożoności obliczeniowej w kontekście obliczeń kwantowych.
Medium nie jest tak ważne; może to być książka, notatki z wykładów online lub tym podobne. Najważniejsza jest zawartość.
Materiał powinien obejmować podstawy kwantowych klas złożoności obliczeniowej i omawiać podobieństwa, różnice i relacje między nimi, a być może także klasyczne klasy złożoności obliczeniowej.
Wolałbym rygorystyczne traktowanie niż intuicyjne. Styl autora nie ma znaczenia.
Jeśli chodzi o warunki wstępne, nie wiem prawie nic na ten temat, więc może więcej samodzielnych materiałów byłoby lepszych. Biorąc to pod uwagę, prawdopodobnie nie przeczytałbym książki na 1000 stron, chyba że byłaby fenomenalnie dobra, wszystko w zakresie 1-500 stron mogłoby działać.
Jeśli chodzi o dostępność, wolałbym oczywiście materiał, który nie znajduje się za jakąś zaporą i można go znaleźć w Internecie, ale nie jest to ścisły wymóg.
Co polecasz?
Odpowiedzi:
Myślę, że ankieta Johna Watrousa jest świetnym miejscem do rozpoczęcia (profesor Watrous polecił mi ją dawno temu i od tego czasu jestem uzależniony!):
J. Watrous. Kwantowa złożoność obliczeniowa. Encyklopedia złożoności i nauki o systemie, Springer, 2009. arXiv: 0804.3401 [quant-ph]
Według mojej najlepszej wiedzy, ma on najwyższy stosunek klas złożoności do strony.
Bardzo podoba mi się też Notatka z wykładu Barbados 2016 Scotta Aaronsona:
S. Aaronson (z A. Bouland i L. Schaeffer). Złożoność stanów kwantowych i transformacji: od pieniędzy kwantowych do czarnych dziur. ECCC TR16-109
źródło
Mogę polecić notatki z wykładu Ronalda de Wolfa, wykorzystane podczas semestralnego kursu wykładanego przez niego na temat obliczeń kwantowych w kontekście holenderskiego programu „Mastermath”.
Rozdział 10 „Teoria złożoności kwantowej”, krótko omawia „klasyczne” klasy złożoności, ale daje wystarczające podstawy do rozmowy o klasach złożoności „kwantowej” i porównania ich z klasycznymi. Nie obejmuje wszystkiego, ale odnosi się do innych materiałów do dalszego czytania.
Rozdział 12 „Złożoność komunikacji kwantowej” jest również istotny i bardziej techniczny, głównie dlatego, że do teorii złożoności komunikacji ma interesujące zastosowania w obliczeniach kwantowych.
źródło