Czy splątanie jest przechodnie w sensie matematycznym?
Mówiąc konkretniej, moje pytanie brzmi:
Rozważ 3 kubity i q 3 . Zakładać, że
- i q 2 są splątane i to
- i q 3 są splątane
Zatem, czy i q 3 są zaplątane ? Jeśli tak, dlaczego? Jeśli nie, to czy istnieje konkretny kontrprzykład?
Jeśli chodzi o moje pojęcie uwikłania:
- kubity i q 2 są splątane, jeżeli po wykreśleniu q 3 qbit q 1 i q 2 są splątane ( wykasowanie q 3 odpowiada pomiarowi i odrzuceniu wyniku).
- kubity i q 3 są splątane, jeśli po wykreśleniu q 1 qbit q 2 i q 3 są splątane.
- kubity i q 3 są splątane, jeśli po wykreśleniu q 2 qbit q 1 i q 3 są splątane.
Zachęcamy do skorzystania z jakiegokolwiek innego rozsądnego pojęcia splątania (niekoniecznie powyższego), o ile wyraźnie to określisz.
entanglement
Piotr
źródło
źródło
Odpowiedzi:
TL; DR: To zależy od tego, jak zdecydujesz się zmierzyć splątanie na parze kubitów. Jeśli wyśledzisz dodatkowe kubity, wtedy „Nie”. Jeśli mierzysz kubity (ze swobodą wyboru optymalnej podstawy pomiaru), wybierz „Tak”.
Localizable Entanglement
One might, instead, talk about the localizable entanglement. Before further clarification, this is what I thought the OP was referring to. In this case, instead of tracing out a qubit, one can measure it in a basis of your choice, and calculate the results separately for each measurement outcome. (There is later some averaging process, but that will be irrelevant to us here.) In this case, my response is specifically about pure states, not mixed states.
The key here is that there are different classes of entangled state. For 3 qubits, there are 6 different types of pure state:
Any type of quantum state can be converted into one of the standard representatives of each class just by local measurements and classical communication between the parties. Note that the conditions of(q1,q2) and (q2,q3) being entangled remove the first 4 cases, so we only have to consider the last 2 cases, W-state and GHZ-state. Both representatives are symmetric under exchange of the particles:
źródło
This isn't an answer, but instead just some background facts that are important to know about in order to avoid "not even wrong" territory on these types of questions.
"Entanglement" is not all-or-nothing. Just saying "q1 is entangled with q2 and q2 is entangled with q3" is not enough information to determine the answer to questions like "if I measure q3, will q1 still be entangled with q2?". Entanglement gets complicated when dealing with larger systems. You really need to know the specific state, and the measurement, and whether you are permitted to condition on the result of the measurement.
It may be the case that q1,q2,q3 are entangled as a group but if you trace out any one of the qubits then the density matrix of the remaining two describes a mere classically correlated state. (E.g. this happens with GHZ states.)
You should be aware of the monogamy of entanglement. Past a certain threshold, increasing the strength of the entanglement between q1 and q2 must decrease the strength of entanglement between q1 and q3 (and equivalently q2 and q3).
źródło
I read the following in Freudenthal triple classication of three-qubit entanglement:
"Dür et al. (Three qubits can be entangled in two inequivalent ways) used simple arguments concerning the conservation of ranks of reduced density matriceshere are only six three-qubit equivalence classes:
which as I understand it the answer to your question is yes: if A and B are entangled and B and C are entangled you necessarily are in one of the three-way entangled states so A and C are also entangled.
źródło