Jak profilować MySQL?

17

Jakie istnieją narzędzia do profilowania MySQL, np. Jak MSSQL 2000+ robi z SQL Profiler?

Chciałbym śledzić takie rzeczy, jak wykonane instrukcje SQL, czasy wykonania, plan wykonania itp.

spoulson
źródło

Odpowiedzi:

5

jeśli masz włączone rejestrowanie zapytań w środowisku produkcyjnym / testowym [co nie jest konieczne], możesz użyć mk-query-digest z pakietu narzędziowego maatkit . pomoże ci ustalić, które zapytania są najczęściej / najdłużej podejmowane itp.

pQd
źródło
3

Inną komercyjną opcją jest MySQL Query Analyzer, który jest częścią MySQL Enterprise Monitor. Uznałem, że jest to umiarkowanie przydatne w profilowaniu zapytań dotyczących nieparzystych kul, aby znaleźć sposoby na poprawę ich wydajności.

Travis Campbell
źródło
3

Możesz także sprawdzić MySQLTuner

talonx
źródło
0

Użyłem kilku skryptów i innych narzędzi, które są świetne, ale uważam, że Jet Profiler jest naprawdę dobry w zapewnianiu monitorowania w czasie rzeczywistym i wizualizacji tego, co się dzieje i jak rzeczy się zmieniają. Pełna wersja kosztuje, ale ograniczona darmowa wersja jest również przydatna i daje dobre wyczucie tego, co można zrobić w pełnej wersji.

Jarod Elliott
źródło
0

Zobacz: https://sites.google.com/site/basicsqlmanagment/ Działa dla mnie, nie jest profilerem proxy

Paweł
źródło
1
Witaj w Server Fault! Zasadniczo podoba nam się, aby odpowiedzi na stronie były w stanie samodzielnie działać - linki są świetne, ale jeśli ten link kiedykolwiek się zepsuje, odpowiedź powinna zawierać wystarczającą ilość informacji, aby nadal być pomocna. Proszę rozważyć edycję swojej odpowiedzi, aby zawierała więcej szczegółów. Zobacz FAQ, aby uzyskać więcej informacji.
slm
0

Bardzo polecam następujące

Ze starej dokumentacji MAATKIT

 Column        Meaning
 ============  ==========================================================
 Rank          The query's rank within the entire set of queries analyzed
 Query ID      The query's fingerprint
 Response time The total response time, and percentage of overall total
 Calls         The number of times this query was executed
 R/Call        The mean response time per execution
 Apdx          The Apdex score; see --apdex-threshold for details
 V/M           The Variance-to-mean ratio of response time
 EXPLAIN       If --explain was specified, a sparkline; see --explain
 Item          The distilled query

W DBA StackExchange odpowiedziałem na ogólne wyniki wydajności dziennika zapytań MySQL . W moim starym poście zasugerowałem użycie mk-query-digest zamiast dziennika ogólnego lub dziennika powolnego. Z tego postu oto przykładowe dane wyjściowe profilowania zapytania wykonane przez mk-query-digest:

# Rank Query ID           Response time    Calls   R/Call     Item
# ==== ================== ================ ======= ========== ====
#    1 0x812D15015AD29D33   336.3867 68.5%     910   0.369656 SELECT mt_entry mt_placement mt_category
#    2 0x99E13015BFF1E75E    25.3594  5.2%     210   0.120759 SELECT mt_entry mt_objecttag
#    3 0x5E994008E9543B29    16.1608  3.3%      46   0.351321 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
#    4 0x84DD09F0FC444677    13.3070  2.7%      23   0.578567 SELECT mt_entry
#    5 0x377E0D0898266FDD    12.0870  2.5%     116   0.104199 SELECT polls_pollquestion mt_category
#    6 0x440EBDBCEDB88725    11.5159  2.3%      21   0.548376 SELECT mt_entry
#    7 0x1DC2DFD6B658021F    10.3653  2.1%      54   0.191949 SELECT mt_entry mt_placement mt_category
#    8 0x6C6318E56E149036     8.8294  1.8%      44   0.200667 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
#    9 0x392F6DA628C7FEBD     8.5243  1.7%       9   0.947143 SELECT mt_entry mt_objecttag
#   10 0x7DD2B294CFF96961     7.3753  1.5%      70   0.105362 SELECT polls_pollresponse
#   11 0x9B9092194D3910E6     5.8124  1.2%      57   0.101973 SELECT content_specialitem content_basecontentitem advertising_product organizations_neworg content_basecontentitem_item_attributes
#   12 0xA909BF76E7051792     5.6005  1.1%      55   0.101828 SELECT mt_entry mt_objecttag mt_tag
#   13 0xEBE07AC48DB8923E     5.5195  1.1%      54   0.102213 SELECT rssfeeds_contentfeeditem
#   14 0x3E52CF0261A7C3FF     4.4676  0.9%      44   0.101536 SELECT schedule_occurrence schedule_occurrence.start
#   15 0x9D0BCD3F6731195B     4.2804  0.9%      41   0.104401 SELECT mt_entry mt_placement mt_category
#   16 0x7961BD4C76277EB7     4.0143  0.8%      18   0.223014 INSERT UNION UPDATE UNION mt_session
#   17 0xD2F486BA41E7A623     3.1448  0.6%      21   0.149754 SELECT mt_entry mt_placement mt_category mt_objecttag mt_tag
#   18 0x3B9686D98BB8E054     2.9577  0.6%      11   0.268885 SELECT mt_entry mt_objecttag mt_tag
#   19 0xBB2443BF48638319     2.7239  0.6%       9   0.302660 SELECT rssfeeds_contentfeeditem
#   20 0x3D533D57D8B466CC     2.4209  0.5%      15   0.161391 SELECT mt_entry mt_placement mt_category

Powyżej tego wyniku znajdują się histogramy tych 20 najgorzej działających zapytań

Przykład histogramu pierwszego wpisu

# Query 1: 0.77 QPS, 0.28x concurrency, ID 0x812D15015AD29D33 at byte 0 __
# This item is included in the report because it matches --limit.
#              pct   total     min     max     avg     95%  stddev  median
# Count         36     910
# Exec time     58    336s   101ms      2s   370ms   992ms   230ms   393ms
# Lock time      0       0       0       0       0       0       0       0
# Users                  1      mt
# Hosts                905 10.64.95.74:54707 (2), 10.64.95.74:56133 (2), 10.64.95.80:33862 (2)... 901 more
# Databases              1     mt1
# Time range 1321642802 to 1321643988
# bytes          1   1.11M   1.22k   1.41k   1.25k   1.26k   25.66   1.20k
# id            36   9.87G  11.10M  11.11M  11.11M  10.76M    0.12  10.76M
# Query_time distribution
#   1us
#  10us
# 100us
#   1ms
#  10ms
# 100ms  ################################################################
#    1s  ###
#  10s+
# Tables
#    SHOW TABLE STATUS FROM `mt1` LIKE 'mt_entry'\G
#    SHOW CREATE TABLE `mt1`.`mt_entry`\G
#    SHOW TABLE STATUS FROM `mt1` LIKE 'mt_placement'\G
#    SHOW CREATE TABLE `mt1`.`mt_placement`\G
#    SHOW TABLE STATUS FROM `mt1` LIKE 'mt_category'\G
#    SHOW CREATE TABLE `mt1`.`mt_category`\G
# EXPLAIN
SELECT `mt_entry`.`entry_id`, `mt_entry`.`entry_allow_comments`, `mt_entry`.`entry_allow_pings`, `mt_entry`.`entry_atom_id`, `mt_entry`.`entry_author_id`, `mt_entry`.`entry_authored_on`, `mt_entry`.`entry_basename`, `mt_entry`.`entry_blog_id`, `mt_entry`.`entry_category_id`, `mt_entry`.`entry_class`, `mt_entry`.`entry_comment_count`, `mt_entry`.`entry_convert_breaks`, `mt_entry`.`entry_created_by`, `mt_entry`.`entry_created_on`, `mt_entry`.`entry_excerpt`, `mt_entry`.`entry_keywords`, `mt_entry`.`entry_modified_by`, `mt_entry`.`entry_modified_on`, `mt_entry`.`entry_ping_count`, `mt_entry`.`entry_pinged_urls`, `mt_entry`.`entry_status`, `mt_entry`.`entry_tangent_cache`, `mt_entry`.`entry_template_id`, `mt_entry`.`entry_text`, `mt_entry`.`entry_text_more`, `mt_entry`.`entry_title`, `mt_entry`.`entry_to_ping_urls`, `mt_entry`.`entry_week_number` FROM `mt_entry` INNER JOIN `mt_placement` ON (`mt_entry`.`entry_id` = `mt_placement`.`placement_entry_id`) INNER JOIN `mt_category` ON (`mt_placement`.`placement_category_id` = `mt_category`.`category_id`) WHERE (`mt_entry`.`entry_status` = 2  AND `mt_category`.`category_basename` IN ('business_review' /*... omitted 3 items ...*/ ) AND NOT (`mt_entry`.`entry_id` IN (53441))) ORDER BY `mt_entry`.`entry_authored_on` DESC LIMIT 4\G
RolandoMySQLDBA
źródło