Czytałem, że transformata Fouriera nie może rozróżniać składników o tej samej częstotliwości, ale innej fazie. Na przykład w Mathoverflow lub xrayphysics , gdzie otrzymałem tytuł mojego pytania: „Transformacja Fouriera nie może zmierzyć dwóch faz przy tej samej częstotliwości”.
Dlaczego to prawda matematycznie?
fourier-transform
fourier
Matematyka oszołomiona
źródło
źródło
Odpowiedzi:
Jest tak, ponieważ jednoczesna obecność dwóch sygnałów sinusoidalnych o tej samej częstotliwości i różnych fazach jest w rzeczywistości równoważna pojedynczemu sinusoidalnemu o tej samej częstotliwości, ale z nową fazą i amplitudą, jak następuje:
Niech dwa sinusodialne składniki zostaną zsumowane w następujący sposób:
Następnie z manipulacji trygonometrycznych można wykazać, że:
gdzieA=a2+b2+2abcos(θ−ϕ)−−−−−−−−−−−−−−−−−−−√ i
Φ=tan−1(asin(ϕ)+bsin(θ)acos(ϕ)+bcos(θ))
dlatego faktycznie masz pojedynczy sinusoidalny (z nową fazą i amplitudą), a zatem nic nie można odróżnić ...
źródło
Jeśli przeczytasz dalej, aż do „ Uproszczonej wersji transformacji Fouriera, którą omówiliśmy powyżej, nie można uwzględnić przesunięć fazowych - w jaki sposób transformacja Fouriera faktycznie to robi?” zauważysz nieco lepsze wyjaśnienie, używają sinusów i cosinusów.
W praktyce jest to bardziej skomplikowane, patrz „ Techniki częściowej Fouriera ”, „ Symetria sprzężona z fazą ” i „ FOV i k-space ”. W „ Wprowadzenie do kodowania fazowego - ja ” wyjaśniają:
W przeciwnym razie wyglądałoby to tak (obrazek A):
PFI pokazuje artefakty z różnych algorytmów: (A) algorytm podstawowy, (B) algorytm BAX, (C) algorytm zerowego wypełnienia, (D) podstawowy algorytm wykorzystujący dane, które miały wcześniej stałą, liniową korektę SDPS, ilustrujący artefakty z SDPS wyższego rzędu.
źródło
Pisanie może być nieco jaśniejszedo cos( ω t + ϕ ) tak jak R e ( c e( ω t + ϕ ) i) . PotemR e dystrybuuje nad dodawaniem, do1sałata( ω t + ϕ1) + c2)sałata( ω t + ϕ2)) = R e ( c1mi( ω t + ϕ1) i+ c2)mi( ω t + ϕ2)) i) . Możemy rozliczyćeω t i i dostajemy R e ( eω t i( c1miϕ1ja+ c2)miϕ2)ja) ) . To pokazuje, że gdy mamy do czynienia z dwoma sygnałami o tej samej częstotliwości, możemy oddzielić część zależną od czasu, pozostawiając każdy sygnał charakteryzujący się stałym składnikiem, i oczywiście, biorąc pod uwagę transformatę Fouriera, stałe wyrażenia mogą być rozebrane. Możemy to jeszcze zauważyć c eϕ i można interpretować jako wektor w złożonej płaszczyźnie, w której znajduje się wielkość do a kąt jest podany przez ϕ . I możemy wykonać dodawanie w tej przestrzeni wektorowej: wektor reprezentujący sumę jest sumą wektorów reprezentujących sumy.
Tak więc, podczas gdy oba sygnały wpływają na wielkość wyjściową, dodatkowy sygnał nie wpłynie na to, gdzie w przestrzeni fazowej znajduje się wyjście.
źródło
Chciałbym obrać ścieżkę geometrycznej wersji pytania, używając sum kół.
Sines i cosinus są „tylko” rzeczywiste i urojone części cisoids lub złożonych wykładniczych (niektóre odnośniki można znaleźć w jaki sposób wyjaśnić wykładniczej o wartościach zespolonych intuicyjnie? , Wiggle fabuła 3D na sygnał analityczny: Heyser korkociąg / spirala , Fourier Transform Tożsamości ).
Jeśli weźmieszsω , ϕ( t ) = e2 πi ( ω t + ϕ ) , następnie R e ( yω , 0( t ) ) = cos(2πωt) , or Im(sω,π/2(t))=cos(2πωt) , and you can do a lot of combinations. The advantage of a cisoid is that it better uses the 2D space, as it can be depicted as a circle (a wheel) on which a point moves at different speeds driven by ω . A sum of "frequencies with different amplitudes" can be represented at "sums of spinning wheels" (borrowed from harmonic circles, or the Fourier Series Animation) with different radii and speeds, as depicted here:
Going back to a sum of two harmonics at the same frequency, the problem reads as: can we separate or measure the combination:a1sω,ϕ1(t)+a2sω,ϕ2(t)?
Constantsa1 and a2 could be complex, so let us simplify the problem a bit before. Since Fourier has shift invariance properties, we can factorize either e2πiϕ1 or e2πiϕ2 , and keep only one phase difference. We can also factorize an amplitude (the biggest for instance), and reduce the question to the behavior of the simplified problem:
with|a|<1 . This simplification can be written as:
and thus as:
which is another harmonic component with same frequency, but a different phase and amplitude. The complex number(1+ae2πiϕ) could be rewritten as αe2πiφ , with trigonometric rules as detailed by @Fat32 (which I could detail later if needed). Now, let us geometrize the intuition. The unit circle is the motion of a point (say the tip of the valve) on a running bicycle wheel. The a -radius circle is like a small spinning wheel attached to the valve (like the blue and red circles only from the picture above). An now, we look at the motion of a dot on the perimeter of the small wheel.
What does your question ask: if the angular rotation of the small an the big wheel are the same, you cannot tell whether the motion of the dot results from the combination of the motion of two wheels of radii1 and a (with some initial angle) or from a single bigger wheel (of radius α ), with some other starting angle. This is what is mean by 1 and 2 .
In other words, neither a Fourier transform, nor a human eye, can distinguish components with the same frequency but different phase.
[[I'll add animations if I find the time]]
źródło