Zastosowanie ogólnej metody momentów (GMM) do obliczenia parametru regresji logistycznej

13

Chcę obliczyć współczynniki dla regresji, która jest bardzo podobna do regresji logistycznej (w rzeczywistości regresja logistyczna z innym współczynnikiem: gdymogą być podane). Myślałem o użyciu GMM do obliczenia współczynników, ale nie jestem pewien, jakie są obecnie warunki, których powinienem użyć.

A1+e(b0+b1x1+b2x2+),
A

Czy ktoś może mi w tym pomóc?

Dzięki!

użytkownik5497
źródło
Kiedy mówisz „ może być podane”, czy masz na myśli, że jest on określony przez użytkownika lub jest oszacowany przez model? A
Makro
tak czy inaczej. Mogę podać to jako dane wejściowe (np. A = 0,25) lub być jednym ze współczynników, które można znaleźć
5497
Czy różni się w zależności od pacjenta (tj. Czy są to dane), czy jest to stała stała we wszystkich obserwacjach?
Makro
naprawiono na wszystkich obserwacjach (jak b0, b1, ...)
user5497
2
Dlaczego nie wykorzystać maksymalnego prawdopodobieństwa zamiast GMM?
Makro

Odpowiedzi:

6

Zakładając , model ten posiada zmienną odpowiedź Bernoulliego Y I zA1Yi

Pr(Yi=1)=A1+eXib,

gdzie (i ewentualnie A , w zależności od tego, czy jest traktowane jako stała czy parametr), są dopasowanymi współczynnikami, a X i jest danymi do obserwacji i . Zakładam, że pojęcie przechwytywania jest obsługiwane przez dodanie zmiennej o stałej wartości 1 do macierzy danych.bAXii

Warunki chwilowe to:

E[(YiA1+eXib)Xi]=0.

Zastępujemy to próbnym odpowiednikiem warunku, zakładając obserwacji:N

m=1Ni=1N[(YiA1+eXib)Xi]=0

mmb

A

dat <- as.matrix(cbind(data.frame(IsVersicolor = as.numeric(iris$Species == "versicolor"), Intercept=1), iris[,1:4]))
head(dat)
#      IsVersicolor Intercept Sepal.Length Sepal.Width Petal.Length Petal.Width
# [1,]            0         1          5.1         3.5          1.4         0.2
# [2,]            0         1          4.9         3.0          1.4         0.2
# [3,]            0         1          4.7         3.2          1.3         0.2
# [4,]            0         1          4.6         3.1          1.5         0.2
# [5,]            0         1          5.0         3.6          1.4         0.2
# [6,]            0         1          5.4         3.9          1.7         0.4

Oto współczynniki dopasowane za pomocą regresji logistycznej:

summary(glm(IsVersicolor~., data=as.data.frame(dat[,-2]), family="binomial"))
# Coefficients:
#              Estimate Std. Error z value Pr(>|z|)    
# (Intercept)    7.3785     2.4993   2.952 0.003155 ** 
# Sepal.Length  -0.2454     0.6496  -0.378 0.705634    
# Sepal.Width   -2.7966     0.7835  -3.569 0.000358 ***
# Petal.Length   1.3136     0.6838   1.921 0.054713 .  
# Petal.Width   -2.7783     1.1731  -2.368 0.017868 *  

(YiA1+eXib)Xii

moments <- function(b, X) {
  A <- 1
  as.vector(X[,1] - A / (1 + exp(-(X[,-1] %*% cbind(b))))) * X[,-1]
}

b

init.coef <- lm(IsVersicolor~., data=as.data.frame(dat[,-2]))$coefficients
library(gmm)
fitted <- gmm(moments, x = dat, t0 = init.coef, type = "iterative", crit = 1e-19,
              wmatrix = "optimal", method = "Nelder-Mead",
              control = list(reltol = 1e-19, maxit = 20000))
fitted
#  (Intercept)  Sepal.Length   Sepal.Width  Petal.Length   Petal.Width  
#      7.37849      -0.24536      -2.79657       1.31364      -2.77834  
# 
# Convergence code =  0 

Kod zbieżności 0 wskazuje, że procedura jest zbieżna, a parametry są identyczne z parametrami zwracanymi przez regresję logistyczną.

momentEstim.baseGmm.iterativegmm:::.obj1mmoptimgmm

gmm.objective <- function(theta, x, momentFun) {
  avg.moment <- colMeans(momentFun(theta, x))
  sum(avg.moment^2)
}
optim(init.coef, gmm.objective, x=dat, momentFun=moments,
      control = list(reltol = 1e-19, maxit = 20000))$par
#  (Intercept) Sepal.Length  Sepal.Width Petal.Length  Petal.Width 
#    7.3784866   -0.2453567   -2.7965681    1.3136433   -2.7783439 
josliber
źródło