Edytować
Znalazłem artykuł opisujący dokładnie procedurę, której potrzebuję. Jedyna różnica polega na tym, że papier interpoluje średnie dane miesięczne do dziennych, przy jednoczesnym zachowaniu średnich miesięcznych. Mam problem z wdrożeniem tego podejścia R
. Wszelkie wskazówki są mile widziane.
Oryginalny
Na każdy tydzień mam następujące dane zliczania (jedna wartość na tydzień):
- Liczba konsultacji lekarskich
- Liczba przypadków grypy
Moim celem jest uzyskiwanie codziennych danych przez interpolację (myślałem o liniowych lub skróconych splajnach). Ważne jest to, że chcę zachować średnią tygodniową, tj. Średnia dziennych danych interpolowanych powinna być równa zarejestrowanej wartości z tego tygodnia. Ponadto interpolacja powinna być płynna. Jednym z problemów, które mogą się pojawić, jest to, że dany tydzień ma mniej niż 7 dni (np. Na początku lub na końcu roku).
Byłbym wdzięczny za porady w tej sprawie.
Wielkie dzięki.
Oto przykładowy zestaw danych za rok 1995 ( zaktualizowany ):
structure(list(daily.ts = structure(c(9131, 9132, 9133, 9134,
9135, 9136, 9137, 9138, 9139, 9140, 9141, 9142, 9143, 9144, 9145,
9146, 9147, 9148, 9149, 9150, 9151, 9152, 9153, 9154, 9155, 9156,
9157, 9158, 9159, 9160, 9161, 9162, 9163, 9164, 9165, 9166, 9167,
9168, 9169, 9170, 9171, 9172, 9173, 9174, 9175, 9176, 9177, 9178,
9179, 9180, 9181, 9182, 9183, 9184, 9185, 9186, 9187, 9188, 9189,
9190, 9191, 9192, 9193, 9194, 9195, 9196, 9197, 9198, 9199, 9200,
9201, 9202, 9203, 9204, 9205, 9206, 9207, 9208, 9209, 9210, 9211,
9212, 9213, 9214, 9215, 9216, 9217, 9218, 9219, 9220, 9221, 9222,
9223, 9224, 9225, 9226, 9227, 9228, 9229, 9230, 9231, 9232, 9233,
9234, 9235, 9236, 9237, 9238, 9239, 9240, 9241, 9242, 9243, 9244,
9245, 9246, 9247, 9248, 9249, 9250, 9251, 9252, 9253, 9254, 9255,
9256, 9257, 9258, 9259, 9260, 9261, 9262, 9263, 9264, 9265, 9266,
9267, 9268, 9269, 9270, 9271, 9272, 9273, 9274, 9275, 9276, 9277,
9278, 9279, 9280, 9281, 9282, 9283, 9284, 9285, 9286, 9287, 9288,
9289, 9290, 9291, 9292, 9293, 9294, 9295, 9296, 9297, 9298, 9299,
9300, 9301, 9302, 9303, 9304, 9305, 9306, 9307, 9308, 9309, 9310,
9311, 9312, 9313, 9314, 9315, 9316, 9317, 9318, 9319, 9320, 9321,
9322, 9323, 9324, 9325, 9326, 9327, 9328, 9329, 9330, 9331, 9332,
9333, 9334, 9335, 9336, 9337, 9338, 9339, 9340, 9341, 9342, 9343,
9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354,
9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365,
9366, 9367, 9368, 9369, 9370, 9371, 9372, 9373, 9374, 9375, 9376,
9377, 9378, 9379, 9380, 9381, 9382, 9383, 9384, 9385, 9386, 9387,
9388, 9389, 9390, 9391, 9392, 9393, 9394, 9395, 9396, 9397, 9398,
9399, 9400, 9401, 9402, 9403, 9404, 9405, 9406, 9407, 9408, 9409,
9410, 9411, 9412, 9413, 9414, 9415, 9416, 9417, 9418, 9419, 9420,
9421, 9422, 9423, 9424, 9425, 9426, 9427, 9428, 9429, 9430, 9431,
9432, 9433, 9434, 9435, 9436, 9437, 9438, 9439, 9440, 9441, 9442,
9443, 9444, 9445, 9446, 9447, 9448, 9449, 9450, 9451, 9452, 9453,
9454, 9455, 9456, 9457, 9458, 9459, 9460, 9461, 9462, 9463, 9464,
9465, 9466, 9467, 9468, 9469, 9470, 9471, 9472, 9473, 9474, 9475,
9476, 9477, 9478, 9479, 9480, 9481, 9482, 9483, 9484, 9485, 9486,
9487, 9488, 9489, 9490, 9491, 9492, 9493, 9494, 9495), class = "Date"),
wdayno = c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L,
5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L,
2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L,
5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L,
2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L,
5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L,
1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L,
2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L,
3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L,
4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L,
5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L,
6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L,
0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L), month = c(1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12), year = c(1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995,
1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995), yearday = 0:364,
no.influ.cases = c(NA, NA, NA, 168L, NA, NA, NA, NA, NA,
NA, 199L, NA, NA, NA, NA, NA, NA, 214L, NA, NA, NA, NA, NA,
NA, 230L, NA, NA, NA, NA, NA, NA, 267L, NA, NA, NA, NA, NA,
NA, 373L, NA, NA, NA, NA, NA, NA, 387L, NA, NA, NA, NA, NA,
NA, 443L, NA, NA, NA, NA, NA, NA, 579L, NA, NA, NA, NA, NA,
NA, 821L, NA, NA, NA, NA, NA, NA, 1229L, NA, NA, NA, NA,
NA, NA, 1014L, NA, NA, NA, NA, NA, NA, 831L, NA, NA, NA,
NA, NA, NA, 648L, NA, NA, NA, NA, NA, NA, 257L, NA, NA, NA,
NA, NA, NA, 203L, NA, NA, NA, NA, NA, NA, 137L, NA, NA, NA,
NA, NA, NA, 78L, NA, NA, NA, NA, NA, NA, 82L, NA, NA, NA,
NA, NA, NA, 69L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA,
NA, NA, NA, 51L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA,
NA, NA, NA, 63L, NA, NA, NA, NA, NA, NA, 55L, NA, NA, NA,
NA, NA, NA, 54L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA,
NA, NA, NA, 27L, NA, NA, NA, NA, NA, NA, 24L, NA, NA, NA,
NA, NA, NA, 12L, NA, NA, NA, NA, NA, NA, 10L, NA, NA, NA,
NA, NA, NA, 22L, NA, NA, NA, NA, NA, NA, 42L, NA, NA, NA,
NA, NA, NA, 32L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA,
NA, NA, NA, 82L, NA, NA, NA, NA, NA, NA, 95L, NA, NA, NA,
NA, NA, NA, 91L, NA, NA, NA, NA, NA, NA, 104L, NA, NA, NA,
NA, NA, NA, 143L, NA, NA, NA, NA, NA, NA, 114L, NA, NA, NA,
NA, NA, NA, 100L, NA, NA, NA, NA, NA, NA, 83L, NA, NA, NA,
NA, NA, NA, 113L, NA, NA, NA, NA, NA, NA, 145L, NA, NA, NA,
NA, NA, NA, 175L, NA, NA, NA, NA, NA, NA, 222L, NA, NA, NA,
NA, NA, NA, 258L, NA, NA, NA, NA, NA, NA, 384L, NA, NA, NA,
NA, NA, NA, 755L, NA, NA, NA, NA, NA, NA, 976L, NA, NA, NA,
NA, NA, NA, 879L, NA, NA, NA, NA), no.consultations = c(NA,
NA, NA, 15093L, NA, NA, NA, NA, NA, NA, 20336L, NA, NA, NA,
NA, NA, NA, 20777L, NA, NA, NA, NA, NA, NA, 21108L, NA, NA,
NA, NA, NA, NA, 20967L, NA, NA, NA, NA, NA, NA, 20753L, NA,
NA, NA, NA, NA, NA, 18782L, NA, NA, NA, NA, NA, NA, 19778L,
NA, NA, NA, NA, NA, NA, 19223L, NA, NA, NA, NA, NA, NA, 21188L,
NA, NA, NA, NA, NA, NA, 22172L, NA, NA, NA, NA, NA, NA, 21965L,
NA, NA, NA, NA, NA, NA, 21768L, NA, NA, NA, NA, NA, NA, 21277L,
NA, NA, NA, NA, NA, NA, 16383L, NA, NA, NA, NA, NA, NA, 15337L,
NA, NA, NA, NA, NA, NA, 19179L, NA, NA, NA, NA, NA, NA, 18705L,
NA, NA, NA, NA, NA, NA, 19623L, NA, NA, NA, NA, NA, NA, 19363L,
NA, NA, NA, NA, NA, NA, 16257L, NA, NA, NA, NA, NA, NA, 19219L,
NA, NA, NA, NA, NA, NA, 17048L, NA, NA, NA, NA, NA, NA, 19231L,
NA, NA, NA, NA, NA, NA, 20023L, NA, NA, NA, NA, NA, NA, 19331L,
NA, NA, NA, NA, NA, NA, 18995L, NA, NA, NA, NA, NA, NA, 16571L,
NA, NA, NA, NA, NA, NA, 15010L, NA, NA, NA, NA, NA, NA, 13714L,
NA, NA, NA, NA, NA, NA, 10451L, NA, NA, NA, NA, NA, NA, 14216L,
NA, NA, NA, NA, NA, NA, 16800L, NA, NA, NA, NA, NA, NA, 18305L,
NA, NA, NA, NA, NA, NA, 18911L, NA, NA, NA, NA, NA, NA, 17812L,
NA, NA, NA, NA, NA, NA, 18665L, NA, NA, NA, NA, NA, NA, 18977L,
NA, NA, NA, NA, NA, NA, 19512L, NA, NA, NA, NA, NA, NA, 17424L,
NA, NA, NA, NA, NA, NA, 14464L, NA, NA, NA, NA, NA, NA, 16383L,
NA, NA, NA, NA, NA, NA, 19916L, NA, NA, NA, NA, NA, NA, 18255L,
NA, NA, NA, NA, NA, NA, 20113L, NA, NA, NA, NA, NA, NA, 20084L,
NA, NA, NA, NA, NA, NA, 20196L, NA, NA, NA, NA, NA, NA, 20184L,
NA, NA, NA, NA, NA, NA, 20261L, NA, NA, NA, NA, NA, NA, 22246L,
NA, NA, NA, NA, NA, NA, 23030L, NA, NA, NA, NA, NA, NA, 10487L,
NA, NA, NA, NA)), .Names = c("daily.ts", "wdayno", "month",
"year", "yearday", "no.influ.cases", "no.consultations"), row.names = c(NA,
-365L), class = "data.frame")
źródło
R
pakietach statystycznych lub innych pakietach statystycznych (nie mam dostępu do ArcGIS)? Obawiam się, że bez konkretnie dostępnej implementacji nadal utknąłem.geoRglm
warunkiem, że bardzo dobrze rozumiesz wariografię i zmianę wsparcia (co jest potrzebne do opracowania modelu korelacji przestrzennej). Podręcznik został opublikowany przez Springera Verlaga jako Geostatistics-Model-Based, Diggle & Ribeiro Jr.Odpowiedzi:
Udało mi się stworzyć
R
funkcję, która interpoluje punkty o równych odstępach liniowo i splajnami, zachowując przy tym środki (np. Tygodniowe, miesięczne itp.). Wykorzystuje funkcjena.approx
ina.spline
odzoo
opakowania i iteracyjnie oblicza wypusty o pożądanych właściwościach. Algorytm opisano w tym artykule .Oto kod:
Zastosujmy funkcję do przykładowego zestawu danych podanego w pytaniu:
Zarówno interpolacje liniowe, jak i splajnowe wydają się być w porządku. Sprawdźmy, czy zachowane są tygodniowe środki (skrócone dane wyjściowe):
źródło
Każda linia prosta przechodząca przez średnią w środku zakresu będzie dawać dzienne wartości o wymaganej średniej. Ostatni komentarz Nicka Coxa dotyczący „dzielenia tygodniowych liczb przez liczbę dni” jest szczególnym przypadkiem tego z gradientem = 0.
Możemy to dostosować i wybrać gradient, aby być może nieco płynniej. Oto trzy funkcje R, aby zrobić coś takiego:
Dodaj miarę dzienną do swoich danych, następnie wykreśl, a następnie wykreśl interpolator:
Inną możliwością jest ograniczenie ciągłości w weekendy, ale daje to system z tylko jednym stopniem swobody - tzn. Jest całkowicie zdefiniowany przez nachylenie pierwszej sekcji (ponieważ wtedy wszystkie inne sekcje muszą się połączyć). Nie kodowałem tego - masz szansę!
[Apolaty dla lekko podniszczonego kodu R, powinny raczej zwracać punkty niż je rysować]
źródło
(Gdyby dane były raczej pomiarami niż liczeniami, skłaniałbym się do modelowania proporcji za pomocą modelu Dirichleta, ale jest to nieco bardziej zaangażowane.)
Fakt, że liczba dni nie zawsze będzie taka sama, nie powinien być szczególnym problemem, o ile wiesz, co to jest - o ile używasz przesunięcia, aby ustawić rzeczy na tym samym „poziomie”.
źródło
Dołączę dodatkowe komentarze jako kolejną odpowiedź.
Upłynęło trochę czasu, zanim struktura tego projektu stała się bardziej przejrzysta. Biorąc pod uwagę, że grypa jest teraz ujawniana jako jedna zmienna towarzysząca wśród kilku, to, co robisz, nie wydaje się tak istotne, a przynajmniej nie zasługuje na sceptycyzm wyrażony w niektórych moich wcześniejszych komentarzach. Ponieważ wszystko inne dzieje się codziennie, skrócenie wszystkiego do tygodni wyrzuciłoby zbyt wiele szczegółów.
Pierwotnym celem pytania pozostaje interpolacja, która zachowuje tygodniowy środek, na który jedną (skrajną) odpowiedzią jest to, że tygodniowy środek zachowuje średnią tygodniową. Ponieważ nie jest to zaskakujące, wydaje się nieatrakcyjne lub nierealne, inne metody interpolacji wydają się bardziej atrakcyjne i / lub metody imputacji zaproponowane przez @Spacedman. (Nie jest jasne, czy byłoby to przypisanie tymczasowego smaku, czy interpolacja z dodatkowym smakiem stochastycznym).
Dwie dalsze szczegółowe myśli:
Przyjmowanie wartości tygodniowych (podzielonych przez liczbę dni), a następnie wygładzanie za pomocą średnich ważonych, w praktyce prawdopodobnie pozwoliłoby zachować średnią do dobrego przybliżenia.
Ponieważ przypadki grypy są liczone, wygładzanie liczby korzeni lub dzienników, a następnie przekształcanie wsteczne może działać lepiej niż tylko wygładzanie liczby.
źródło