Mam sparowanych obserwacji ( , ) zaczerpniętych ze wspólnego nieznanego rozkładu, który ma skończony pierwszy i drugi moment i jest symetryczny wokół średniej.
Niech odchylenie standardowe (bezwarunkowe dla ), a to samo dla Y. Chciałbym przetestować hipotezę
:
:
Czy ktoś wie o takim teście? W pierwszej analizie mogę założyć, że rozkład jest normalny, chociaż ogólny przypadek jest bardziej interesujący. Szukam rozwiązania w formie zamkniętej. Bootstrap jest zawsze ostatecznością.
Odpowiedzi:
Można wykorzystać fakt, że rozkład wariancji próbki jest rozkładem chi-kwadrat wyśrodkowanym na wariancji prawdziwej. Pod twoją hipotezą zerową twoja statystyka testowa byłaby różnicą dwóch losowych zmiennych kwadratowych chi wyśrodkowanych na tej samej nieznanej prawdziwej wariancji. Nie wiem, czy różnica dwóch losowych zmiennych chi-kwadrat jest możliwym do zidentyfikowania rozkładem, ale powyższe może ci w pewnym stopniu pomóc.
źródło
Jeśli chcesz zejść nieparametryczną trasą, zawsze możesz spróbować testu kwadratowych rang.
W przypadku niesparowanym założenia do tego testu (wzięte stąd ) są następujące:
Te uwagi do wykładu szczegółowo opisują niesparowany przypadek.
W przypadku sparowanej skrzynki należy nieco zmienić tę procedurę. W połowie tej strony powinnaś wiedzieć, od czego zacząć.
źródło
Najbardziej naiwne podejście można myśleć jest regresji vs X i jako Y i ~ m X I + b , a następnie przeprowadzić t -test na hipotezie, m = 1 . Zobacz test t dla nachylenia regresji .Yi Xi Yi∼m^Xi+b^ t m=1
Mniej naiwnym podejściem jest test Morgana-Pitmana. Niech a następnie wykonaj test współczynnika korelacji Pearsona U i vs V i . (Można to zrobić po prostu za pomocą transformaty Fisher RZ , która daje przedziały ufności wokół przykładowego współczynnika Pearsona lub za pomocą paska startowego.)Ui=Xi−Yi,Vi=Xi+Yi, Ui Vi
Jeśli używasz R i nie chcesz samodzielnie kodować wszystkiego, skorzystałbym
bootdpci
z pakietu Robust Stats Wilcox, WRS. (patrz strona Wilcox .)źródło
Jeśli możesz założyć dwuwymiarową normalność, możesz opracować test ilorazu wiarygodności, porównując dwie możliwe struktury macierzy kowariancji. Oszacowania maksymalnego prawdopodobieństwa nieograniczonego (H_a) są dobrze znane - tylko przykładowa macierz kowariancji, te ograniczone (H_0) można wyprowadzić przez zapisanie prawdopodobieństwa (i prawdopodobnie będzie to pewnego rodzaju „zbiorcza” ocena).
Jeśli nie chcesz wyprowadzać formuł, możesz użyć SAS lub R, aby dopasować model z powtarzanymi pomiarami do nieustrukturyzowanych i złożonych struktur kowariancji symetrii i porównać prawdopodobieństwa.
źródło
Trudność najwyraźniej przychodzi, ponieważ i Y są ze sobą powiązane (zakładam, że ( X , Y ) są wspólnie gaussowskie, jak Aniko) i nie można zrobić różnicy (jak w odpowiedzi @ svadali) lub stosunku (jak w Standardowym Fisher-Snedecor „Test F”), ponieważ byłyby one zależne od rozkładu χ 2 i ponieważ nie wiesz, co to za zależność, co utrudnia wyprowadzenie rozkładu w H 0 .X Y (X,Y) χ2 H0
Moja odpowiedź opiera się na równaniu (1) poniżej. Ponieważ różnicę wariancji można podzielić na czynniki z różnicami wartości własnych i różnicą kąta obrotu, test równości można odrzucić na dwa testy. Pokazuję , że można zastosować test Fishera-Snedecora wraz z testem na zboczu, takim jak ten zaproponowany przez @shabbychef ze względu na prostą właściwość wektorów gaussowskich 2D.
Fisher Snedecora testu: Jeżeli dla ( Z I 1 , ... , Z i n I ) IID Gaussa zmiennych losowych nieobciążonego wariancji empirycznej λ 2 I i prawdziwe wariancji λ 2 I , po czym możliwe jest sprawdzenie, czy λ 1 = λ 2 wykorzystując fakt, że pod wartością zerowąi=1,2 (Zi1,…,Zini) λ^2i λ2i λ1=λ2
Wykorzystuje się to, że następujerozkład Fisher SnedecoraF(n1-1,n2-1)
A simple property of 2D gaussian vector Let us denote by
Testing ofVar(X)=Var(Y) can be done through testing if (
λ21=λ22 or θ=π/4mod[π/2] )
Conclusion (Answer to the question) Testing forλ21=λ22 is easely done by using ACP (to decorrelate) and Fisher Scnedecor test. Testing θ=π/4[modπ/2] is done by testing if |β1|=1 in the linear regression Y=β1X+σϵ (I assume Y and X are centered).
Testing wether(λ21=λ22 or θ=π/4[modπ/2]) at level α is done by testing if λ21=λ22 at level α/3 or if |β1|=1 at level α/3 .
źródło