Pytania oznaczone «svm»

Support Vector Machine odnosi się do „zestawu powiązanych nadzorowanych metod uczenia się, które analizują dane i rozpoznają wzorce, stosowanych do klasyfikacji i analizy regresji”.

134
Jaki jest wpływ C na SVM z liniowym jądrem?

Obecnie używam SVM z liniowym jądrem do klasyfikowania moich danych. Zestaw treningowy nie zawiera błędów. Próbowałem kilka wartości dla parametru ( ). Nie zmieniło to błędu w zestawie testowym.CCC10−5,…,10210−5,…,10210^{-5}, \dots, 10^2 Teraz zastanawiam się: czy to błąd spowodowany przez...

77
Przykład: regresja LASSO z użyciem glmnet dla wyniku binarnego

Zaczynam bawić sięglmnet za pomocą regresji LASSO, gdzie moje wyniki zainteresowania są dychotomiczne. Poniżej utworzyłem małą próbną ramkę danych: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p <- c(0.86, 0.45, 0.99, 0.84, 0.85, 0.67, 0.91, 0.29,...

50
Po co zawracać sobie głowę podwójnym problemem przy montażu SVM?

Biorąc pod uwagę punkty danych i etykiety , podstawowym problemem z twardym marginesem SVM jestx1,…,xn∈Rdx1,…,xn∈Rdx_1, \ldots, x_n \in \mathbb{R}^dy1,…,yn∈{−1,1}y1,…,yn∈{−1,1}y_1, \ldots, y_n \in \left \{-1, 1 \right\} minimizew,w012wTwminimizew,w012wTw \text{minimize}_{w, w_0} \quad \frac{1}{2}...

46
Jakie są alternatywy Gradient Descent?

Zejście z gradientem ma problem z utknięciem w lokalnych minimach. Musimy uruchomić czasy wykładnicze spadku gradientu, aby znaleźć globalne minima. Czy ktoś może mi powiedzieć o jakichkolwiek alternatywach gradientu zejścia stosowanych w uczeniu się sieci neuronowej, a także o ich zaletach i...

42
Jak interpretować wagi funkcji SVM?

Próbuję zinterpretować zmienne wagi podane przez dopasowanie liniowego SVM. (Używam scikit-learn ): from sklearn import svm svm = svm.SVC(kernel='linear') svm.fit(features, labels) svm.coef_ Nie mogę znaleźć w dokumentacji niczego, co wyraźnie określa sposób obliczania lub interpretowania...

37
SVM, Nadmierne dopasowanie, przekleństwo wymiarowości

Mój zestaw danych jest niewielki (120 próbek), jednak liczba funkcji jest duża i waha się od (1000-200 000). Chociaż dokonuję wyboru funkcji, aby wybrać podzbiór funkcji, może się ona nadal nadpisywać. Moje pierwsze pytanie brzmi: w jaki sposób SVM radzi sobie z nadmiernym dopasowaniem, jeśli w...

37
Porównanie SVM i regresji logistycznej

Czy ktoś może mi podpowiedzieć, kiedy wybrać SVM lub LR? Chcę zrozumieć intuicję stojącą za różnicą między kryteriami optymalizacji uczenia się hiperpłaszczyzny tych dwóch, gdzie odpowiednie cele są następujące: SVM: Spróbuj zmaksymalizować margines między najbliższymi wektorami wsparcia LR:...

33
Czy istnieje jakiś problem z nadzorowanym uczeniem się, który (głębokie) sieci neuronowe nie mogłyby oczywiście przewyższyć innych metod?

Widziałem, że ludzie wkładali wiele wysiłku w SVM i jądra i wyglądają całkiem interesująco jako starter w uczeniu maszynowym. Ale jeśli spodziewamy się, że prawie zawsze moglibyśmy znaleźć lepsze rozwiązanie pod względem (głębokiej) sieci neuronowej, jakie jest znaczenie wypróbowania innych metod w...