Spraw, by wszystkie kwadraty eksplodowały

20

Otrzymujesz macierz kwadratową o szerokości 2 , zawierającą liczby kwadratowe 1 .

Twoim zadaniem jest sprawienie, by wszystkie liczby kwadratowe „eksplodowały”, aż wszystkie znikną. Musisz wydrukować lub zwrócić ostatnią matrycę.

Dokładniej:

  1. Poszukaj najwyższego kwadratu x2 w matrycy.
  2. Poszukaj jego najmniejszego sąsiadującego sąsiada n (poziomo lub pionowo i bez owijania się).
  3. Wymienić x2 z x i zastąpić n z n×x .

Powtarzaj proces od kroku 1, aż w matrycy nie będzie już kwadratu.

Przykład

Matryca wejściowa:

(62536196324)

Najwyższy kwadrat 625 wybucha na dwie części 625=25i łączy się z najmniejszym sąsiadem36, który staje się36×25=900:

(25900196324)

Najwyższy kwadrat 900 eksploduje i łączy się z najmniejszym sąsiadem 25 :

(75030196324)

Najwyższy kwadrat 324 wybucha i łączy się z najmniejszym sąsiadem 30 :

(75054019618)

Jedyny pozostały kwadrat 196 eksploduje i łączy się z najmniejszym sąsiadem 18 :

(75054014252)

Nie ma już kwadratu, więc skończyliśmy.

Zasady

  • Gwarantowana macierz wejściowa ma następujące właściwości:
    • na każdym kroku najwyższy kwadrat zawsze będzie niepowtarzalny
    • na każdym kroku najmniejszy sąsiad najwyższego kwadratu zawsze będzie wyjątkowy
    • sekwencja nie będzie się powtarzać wiecznie
  • Początkowa matryca może zawierać 1 , ale nie musisz się martwić o zrobienie 1 wybuchnie, ponieważ nigdy nie będzie ona najwyższa lub jedynym pozostałym kwadratem.
  • We / wy można przetwarzać w dowolnym rozsądnym formacie
  • To jest

Przypadki testowe

Input : [[16,9],[4,25]]
Output: [[24,6],[20,5]]

Input : [[9,4],[1,25]]
Output: [[3,12],[5,5]]

Input : [[625,36],[196,324]]
Output: [[750,540],[14,252]]

Input : [[1,9,49],[1,4,1],[36,25,1]]
Output: [[3,6,7],[6,2,7],[6,5,5]]

Input : [[81,4,64],[16,361,64],[169,289,400]]
Output: [[3,5472,8],[624,323,1280],[13,17,20]]

Input : [[36,100,1],[49,144,256],[25,49,81]]
Output: [[6,80,2],[42,120,192],[175,21,189]]

Input : [[256,169,9,225],[36,121,144,81],[9,121,9,36],[400,361,100,9]]
Output: [[384,13,135,15],[24,1573,108,54],[180,11,108,6],[380,209,10,90]]

Input : [[9,361,784,144,484],[121,441,625,49,25],[256,100,36,81,529],[49,4,64,324,16],[25,1,841,196,9]]
Output: [[171,19,700,4032,22],[11,210,525,7,550],[176,60,6,63,23],[140,112,1152,162,368],[5,29,29,14,126]]
Arnauld
źródło
3
You must print or return the final matrix.Czy zamiast tego mogę zmodyfikować macierz wejściową?
Wcielenie nieznajomości
2
@EmbodimentofIgnorance Tak, w porządku.
Arnauld
Wartości w rogu (przekątna) są uważane za sąsiadów?
Luis felipe De Jesus Munoz
1
Czy dane wyjściowe można uzupełnić (kilkoma wierszami i kolumnami) zer?
Robin Ryder
1
0

Odpowiedzi:

5

R , 301 287 277 274 222 217 195 186 178 178 174 bajtów

Nic szczególnie kreatywnego, w tym zerowe buforowanie elementów peryferyjnych macierzy wejściowej, wcześniejsza wersja ulepszona później przez Robina:

function(x){w=which.max
if(any(s<-!x^.5%%1)){
y=cbind(NA,rbind(NA,x,NA),NA)
z=y[i]=y[i<-w(y*y%in%x[s])]^.5
m=i+c(r<--c(1,nrow(y)),-r)
y[j]=y[j<-m[w(-y[m])]]*z
x=p(y[r,r])}
x}

Wypróbuj online

Wykorzystując sekwencję liczb jako swój wpis, a tym samym usuwając wywołanie funkcji, Nick Kennedy wcześniej zarządzał 186-bajtową wersją algorytmu w następujący sposób (z -10 bajtami przez Robina ):

w=which.max;`~`=cbind;x=scan();while(any(s<-!x^.5%%1)){y=NA~t(NA~matrix(x,n<-length(x)^.5)~NA)~NA;i=w(y*y%in%x[s]);=i+c(r<--c(1,n+2),-r);y[j]=y[j<-m[w(-y[m])]]*(y[i]=y[i]^.5);x=y[r,r]};x

unikanie definicji funkcji (rekurencyjnej) oraz innych dobrych korzyści.

Wypróbuj online

Xi'an
źródło
1
Twoja liczba bajtów jest wyłączona. W każdym razie, oto mocno golfowa wersja o 196 bajtach: tio.run/…
Nick Kennedy
2
dzięki, że pytasz. Ogólnie, jeśli ktoś opublikuje krótszą wersję w komentarzu do Twojej odpowiedzi, możesz go użyć / dostosować swoją odpowiedź na tej podstawie. Byłoby wówczas grzecznie dodać gdzieś w towarzyszącym tekście „Dzięki @ <użytkownik> za zapisanie <numer> bajtów!” lub podobne. Gdybym skończył w czymś zupełnie innym niż twoja odpowiedź, ale czerpałem inspirację z twojej, mógłbym zamiast tego opublikować osobną odpowiedź na twoje pytanie. Ale tutaj większość tego, co zrobiłem, to drobne poprawki - podstawowa metoda pozostaje twoja.
Nick Kennedy
2

Ruby , 140 135 bajtów

Pobiera płaską listę jako dane wejściowe, tworzy płaską listę.

->m{i=1;(i=m.index m.reject{|e|e**0.5%1>0}.max
m[i+[1,-1,l=m.size**0.5,-l].min_by{|j|i+j>=0&&m[i+j]||m.max}]*=m[i]**=0.5if i)while i;m}

Wypróbuj online!

Wyjaśnienie:

->m{                                # Anonymous lambda
    i=1;                            # Initialize i for the while loop
        (                           # Start while loop

i=m.index                           # Get index at...
    m.reject{|e|          }         # Get all elements of m, except the ones with...
                e**0.5%1>0          # a square root with a fractional component
                           .max     # Get the largest of these

m[i+                                # Get item at...
    [1,-1,l=m.size**0.5,-l]         # Get possible neighbors (up, down, left, right)
        .min_by{|j|i+j>=0&&m[i+j]|| # Find the one with the minimum value at neighbor
                            m.max}  # If out of range, return matrix max so
                                    #   neighbor isn't chosen
    ]
    *=m[i]**=0.5                    # Max square becomes its square root, then multiply
                                    #   min neighbor by it

)while i                            # End while loop. Terminate when index is nil.
m}                                  # Return matrix.
Wartość tuszu
źródło
2

Python 2 , 188 bajtów

M=input()
l=int(len(M)**.5)
try:
 while 1:m=M.index(max(i**.5%1or i for i in M));_,n=min((M[m+i],m+i)for i in m/l*[-l]+-~m%l*[1]+[l][:m/l<l-1]+m%l*[-1]);M[m]**=.5;M[n]*=M[m]
except:print M

Wypróbuj online!

Pełny program Pobiera dane wejściowe i drukuje jako płaską listę.

Erik the Outgolfer
źródło
2

Perl 6 , 236 bajtów

{my@k=.flat;my \n=$_;loop {my (\i,\j)=@k>>.sqrt.grep({$_+|0==$_},:kv).rotor(2).max(*[1]);last if 0>i;$/=((0,1),(0,-1),(1,0),(-1,0)).map({$!=i+n*.[0]+.[1];+$!,n>.[0]+i/n&.[1]+i%n>=0??@k[$!]!!Inf}).min(*[1]);@k[i,$0]=j,j*$1};@k.rotor(+n)}

Wypróbuj online!

bb94
źródło
1
213 bajtów . Wątpię jednak, czy mechanizm zapętlenia jest tak krótki, jak mógłby być ... Jestem też zirytowany tym, że Python nas pokonuje, więc może jest inne podejście
Jo King
2

MATL , 49 48 bajtów

`ttX^tt1\~*X>X>XJt?wy=(tt5M1Y6Z+*tXzX<=*Jq*+w}**

Wypróbuj online! Lub sprawdź wszystkie przypadki testowe .

Jak to działa

`           % Do...while
  tt        %   Duplicate twice. Takes a matrix as input (implicit) the first time
  X^        %   Square root of each matrix entry
  tt        %   Duplicate twice
  1\~       %   Modulo 1, negate. Gives true for integer numbers, false otherwise
  *         %   Multiply, element-wise. This changes non-integers into zero
  X>X>      %   Maximum of matrix. Gives maximum integer square root, or zero
  XJ        %   Copy into clipboard J
  t         %   Duplicate
  ?         %   If non-zero
    wy      %     Swap, duplicate from below. Moves the true-false matrix to top
    =       %     Equals, element-wise. This gives a matrix which is true at the
            %     position of the maximum that was previously identified, and
            %     false otherwise
    (       %     Write the largest integer square root into that position
    tt      %     Duplicate twice
    5M      %     Push again the matrix which is true for the position of maximum
    1Y6     %     Push matrix [0 1 0; 1 0 1; 0 1 0] (von Neumann neighbourhood)
    Z+      %     2D convolution, keeping size. Gives a matrix which is 1 for the
            %     neighbours of the value that was replaced by its square root
    *       %     Multiply. This replaces the value 1 by the actual values of
            %     the neighbours
    t       %     Duplicate
    XzX<    %     Minimum of non-zero entries
    =       %     Equals, element-wise. This gives a matrix which is true at the
            %     position of the maximum neighbour, and zero otherwise
    *       %     Multiply, element-wise. This gives a matrix which contains the
            %     maximum neighbour, and has all other entries equal to zero
    J       %     Push the maximum integer root, which was previously stored
    q       %     Subtract 1
    *       %     Multiply element-wise. This gives a matrix which contains the
            %     maximum neighbour times (maximum integer root minus 1)
    +       %     Add. This replaces the maximum neighbour by the desired value,
            %     that is, the previously found maximum integer square root
            %     times the neighbour value
    w       %     Swap
  }         %   Else. This means there was no integer square root, so no more
            %   iterations are neeeded
  **        %   Multiply element-wise twice. Right before this the top of the
            %   stack contains a zero. Below there are the latest matrix with
            %   square roots and two copies of the latest matrix of integers,
            %   one of which needs to be displayed as final result. The two
            %   multiplications leave the stack containing a matrix of zeros
            %   and the final result below
            % End (implicit). The top of the stack is consumed. It may be a
            % positive number, which is truthy, or a matrix of zeros, which is
            % falsy. If truthy a new iteration is run. If falsy the loop exits
            % Display (implicit)
Luis Mendo
źródło
1

JavaScript (ES6), 271 259 250 245 bajtów

m=>{for(l=m.length;I=J=Q=-1;){for(i=0;i<l;i++)for(j=0;j<l;j++)!((q=m[i][j]**.5)%1)&&q>Q&&(I=i,J=j,Q=q);if(I<0)break;d=[[I-1,J],[I+1,J],[I,J-1],[I,J+1]];D=d.map(([x,y])=>(m[x]||0)[y]||1/0);[x,y]=d[D.indexOf(Math.min(...D))];m[x][y]*=Q;m[I][J]=Q}}

Dzięki Luisowi Felipe De Jesus Munoz za −14 bajtów!

Wyjaśnienie:

m => { // m = input matrix
  // l = side length of square matrix
  // I, J = i, j of largest square in matrix (initialized to -1 every iteration)
  // Q = square root of largest square in matrix
  for (l = m.length; (I = J = Q = -1); ) {
    // for each row,
    for (i = 0; i < l; i++)
      // for each column,
      for (j = 0; j < l; j++)
        // if sqrt of m[i][j] (assigned to q) has no decimal part,
        // (i.e. if m[i][j] is a perfect square and q is its square root,)
        !((q = m[i][j] ** 0.5) % 1) &&
          // and if this q is greater than any previously seen q this iteration,
          q > Q &&
          // assign this element to be the largest square in matrix.
          ((I = i), (J = j), (Q = q));
    // if we did not find a largest square in matrix, break loop.
    if (I < 0) break;
    // d = [i, j] pairs for each neighbor of largest square in matrix
    d = [[I - 1, J], [I + 1, J], [I, J - 1], [I, J + 1]];
    // D = value for each neighbor in d, or Infinity if value does not exist
    D = d.map(([x, y]) => (m[x] || 0)[y] || 1 / 0);
    // x = i, y = j of smallest adjacent neighbor of largest square
    [x, y] = d[D.indexOf(Math.min(...D))];
    // multiply smallest adjacent neighbor by square root of largest square
    m[x][y] *= Q;
    // set largest square to its square root
    m[I][J] = Q;
  } // repeat until no remaining squares in matrix
  // no return necessary; input matrix is modified.
};
ArkaneMoose
źródło
1

Wolfram Language (Mathematica) , 224 bajty

(l=#;While[(c=Length)[m=Select[Join@@l,IntegerQ[Sqrt@#]&]]>0,t=##&@@#&@@SortBy[Select[(g=#&@@Position[l,f=Max@m])+#&/@{{1,0},{0,1},{-1,0},{0,-1}},Min@#>0&&Max@#<=c@l&],l[[##]]&@@#&];l[[##&@@g]]=(n=Sqrt@f);l[[t]]=l[[t]]n];l)&

Wypróbuj online!

J42161217
źródło
1

JavaScript (Node.js) , 157 bajtów

a=>g=(l,m=n=i=j=0)=>a.map((o,k)=>m>o||o**.5%1||[m=o,i=k])|m&&a.map((o,k)=>n*n<o*n|((i/l|0)-(k/l|0))**2+(i%l-k%l)**2-1||[n=o,j=k])|[a[i]=m**=.5,a[j]=m*n]|g(l)

Wypróbuj online!

-14 bajtów dzięki @Arnauld, który również napisał fajną uprząż testową :)

Anonimowa funkcja, która przyjmuje 1-wymiarową tablicę jako dane wejściowe i parametr długości określający liczbę, jeśli kolumny / wiersze.

Wejście curry jest określone jako f(array)(length).

// a: 1-dimensional array of values
// g: recursive function that explodes once per recursive call
// l: number of columns, user specified
// m: max square value
// n: min neighbor
// i: index of max square
// j: index of min neighbor
a=>g=(l,m=n=i=j=0)=>
  // use .map() to iterate and find largest square
  a.map((o,k)=>
    // check size of element
    m>o||
    // check if element is a square
    o**.5%1||
    // new max square found, update local variables
    [m=o,i=k])|
  // after first .map() is complete, continue iff a square is found
  // run .map() again to find smallest neighbor
  m&&a.map((o,k)=>
    // check size of element
    n*n<o*n|
    // check relative position of element
    ((i/l|0)-(k/l|0))**2+(i%l-k%l)**2-1||
    // a new smallest neighbor found, update local variables
    [n=o,j=k])|
  // update matrix in-place, largest square is reduced,
  // smallest neighbor is increased
  [a[i]=m**=.5,a[j]=m*n]|
  // make recursive call to explode again
  g(l)
dana
źródło
1

Java 8, 299 297 bajtów

m->{for(int l=m.length,i,j,I,J,d,M,t,x,y;;m[x][y]*=d){for(i=l,I=J=d=0;i-->0;)for(j=l;j-->0;d=t>d*d&Math.sqrt(t)%1==0?(int)Math.sqrt(m[I=i][J=j]):d)t=m[i][j];if(d<1)break;for(M=-1>>>1,m[x=I][y=J]=d,t=4;t-->0;)try{M=m[i=t>2?I-1:t>1?I+1:I][j=t<1?J-1:t<2?J+1:J]<M?m[x=i][y=j]:M;}catch(Exception e){}}}

Zmienia macierz wejściową zamiast zwracać nową, aby zapisać bajty.

Wypróbuj online.

Wyjaśnienie:

m->{                          // Method with integer-matrix input and no return-type
  for(int l=m.length,         //  Dimension-length `l` of the matrix
      i,j,I,J,d,M,t,x,y;      //  Temp integers
      ;                       //  Loop indefinitely:
       m[x][y]*=d){           //    After every iteration: multiply `x,y`'s value with `d`
    for(I=J=d=0,              //   (Re)set `I`, `J`, and `d` all to 0
        i=l;i-->0;)           //   Loop `i` in the range (`l`, 0]:
      for(j=l;j-->0;          //    Inner loop `j` in the range (`l`, 0]:
          d=                  //      After every iteration: set `d` to:
            t>d*d             //       If `t` is larger than `d` squared
            &Math.sqrt(t)%1==0?
                              //       And `t` is a perfect square:
             (int)Math.sqrt(m[I=i][J=j])
                              //        Set `I,J` to the current `i,j`
                              //        And `d` to the square-root of `t`
            :d)               //       Else: leave `d` the same
        t=m[i][j];            //     Set `t` to the value of `i,j`
    if(d<1)                   //   If `d` is still 0 after the nested loop
                              //   (which means there are no more square-numbers)
      break;                  //    Stop the infinite loop
    for(M=-1>>>1,             //   (Re)set `M` to Integer.MAX_VALUE
        m[x=I][y=J]=d,        //   Replace the value at `I,J` with `d`
        t=4;t-->0;)           //   Loop `t` in the range (4, 0]:
      try{M=                  //    Set `M` to:
            m[i=t>2?          //     If `t` is 3:
                 I-1          //      Go to the row above
                :t>1?         //     Else-if `t` is 2:
                 I+1          //      Go to the row below
                :             //     Else (`t` is 0 or 1):
                 I]           //      Stay in the current row
                              //     (and save this row in `i`)
             [j=t<1?          //     If `t` is 0:
                 J-1          //      Go to the column left
                :t<2?         //     Else-if `t` is 1:
                 J+1          //      Go to the column right
                :             //     Else (`t` is 2 or 3):
                 J]           //      Stay in the current column
                              //     (and save this column in `j`)
             <M?              //     And if the value in this cell is smaller than `M`:
                m[x=i][y=j]   //      Set `x,y` to `i,j`
                              //      And `M` to the current value in `i,j`
               :M;            //     Else: leave `M` the same
      }catch(Exception e){}}} //    Catch and ignore IndexOutOfBoundsExceptions
Kevin Cruijssen
źródło
1

Galaretka , 70 67 bajtów

’dL½$}©+Ø.,U$;N$¤%®‘¤<®Ạ$Ƈæ.®‘ịÐṂḢ;ḷ;€ị½¥×÷ƭ⁹Ḣ¤¦Ṫ}¥ƒ
×Ʋ$MḢçɗ⁸Ẹ?ƊÐL

Wypróbuj online!

Jestem pewien, że można to zrobić o wiele krócej, ale uważam to za trudniejsze niż się wydawało. Wyjaśnienie do naśladowania, gdy spróbuję lepiej grać w golfa.

Pełny program, który pobiera listę liczb całkowitych odpowiadających macierzy kwadratowej i zwraca listę liczb całkowitych reprezentujących ostateczną rozłożoną macierz. L

Nick Kennedy
źródło