Dwie czarne skrzynki wyświetlają tę samą impedancję na wszystkich częstotliwościach. Pierwszy zawiera pojedynczy rezystor 1 Ohm. Każdy koniec jest podłączony do drutu, dzięki czemu dwa przewody wystają z pudełka. Drugie pudełko wygląda identycznie z zewnątrz, ale wewnątrz są 4 elementy. Kondensator 1 F jest równoległy z rezystorem 1 Ohm, a cewka 1 H jest równoległa z drugim rezystorem 1 Ohm. Kombinacja RC jest połączona szeregowo z kombinacją RL, jak pokazano na rysunku
Skrzynie są pomalowane na czarno, nietłukące, nieprzepuszczalne dla promieni rentgenowskich i ekranowane magnetycznie.
Wykazać, że impedancja każdego pola wynosi 1 Ohm przy wszystkich częstotliwościach. Jaki pomiar pozwoliłby ustalić, które pudełko zawiera pojedynczy rezystor?
Odpowiedzi:
To jest uzupełnienie odpowiedzi Luchadora .
Przemijające rozpraszanie mocy w dwóch polach jest bardzo różne. Poniższa symulacja to pokazuje.
symulacja tego obwodu - Schemat utworzony za pomocą CircuitLab
Uruchom symulację przez 40 sekund i wykreśl wyrażenie „I (R1.nA) ^ 2 + I (R2.nA) ^ 2”, które reprezentuje całkowitą moc chwilową dwóch rezystorów.
As I said in my comment, box A will not only heat up more slowly while the pulse is on, it will exhibit a spike in temperature when the pulse ends, because the total instantaneous power dissipated in the resistors is doubled at that moment. Box B will not exhibit such a spike.
(NOTE: If you have trouble running the simulation, see this Meta post.)
źródło
The only observable difference is lagged dissipation of power as heat. Any restriction of observing heat transfer is against thermodynamics laws. So, somehow you can observe that and figure out, despite of that restrictions list.
źródło
Measure the thermal noise of the resister and you will get KTB from college or damn close to it. The box with the reactive components will give some measurable noise too BUT it is the vector sum of HF rolled off and LF rolled off noise. The math is a bit long for this but suffice to say that there will be a difference in your noise measurements. On a spectrum analyser you will see some lack of flatness around the resonant frequency. Because the network has a Q of 1 the effect will be quite broad. If you wanted to do this as an actual experiment and not just an experiment in thought you will need to choose component values that would be more physically realisable and easier to make more ideal .
źródło
You could apply a DC voltage to box A. That will charge the capacitor. Now you can remove the source and measure the stored voltage. That does not work for box B.
Update: For this particular choice of components the system is not observable. For this reason this method won't work. When we apply a voltage to the circuit, we'll have a current through the inductor and a charge on the capacitor. As soon as we remove the voltage, the inductor's current will flow through the parallel resistor, thus cancelling the voltage on the capacitor. The current of the inductor and the voltage on the capacitor will decay at the same rate. They can't be observed from the outside.
źródło
In box A,RL is in parallel with L , which has some DC resistance, R(L) .
The total resistance ofRL and R(L) , then, is:
which must be less thanRLΩ but greater than 0Ω .
Box B, however contains a one ohm resistor, so the identities of the boxes can be confirmed by measuring the end-to-end resistances of the wires protruding from the boxes, with box A exhibiting a higher resistance than box B.
źródło
Make a third terminal by tightly enclosing the current box with a metal box (or just use the current box if it is already metal). Then, measure the frequency response of each of the original two terminals with respect to this new terminal: Box B's responses should be more symmetric (Box A should show some difference depending upon whether you probe the capacitor terminal or the inductor terminal).
I doubt you can design two boxes such that they are indistinguishable for this three-terminal experiment. Please give box details if you can.
źródło
Let's assume to start with that the components are well enough matched, which itself is an issue given tolerances on capacitors and inductors.
You're assuming an ideal inductor. In the real world, the inductor core goes into saturation with enough current/frequency applied. Unless you have an air-core inductor, of course, but that will always radiate in various interesting ways which are detectable externally.
You're also assuming the capacitor is not polarised and has no breakdown voltage. Polarisation is easy to check - simply put a negative voltage across it. Breakdown voltage may be harder, given that we would need a lot of current as well. The obvious solution there though is that a step-change in current (a hard switch-off) will produce a massive voltage spike from the inductor. That's how a car's spark plugs are driven, producing several kV from a 12V battery. Doing the same here would likely push the capacitor beyond its breakdown voltage.
źródło
Hook up a time-domain reflectometer and send a pulse into the box. The reflections should show the presence of multiple elements.
źródło