Mam dwie kolumny fromdate
i todate
w ramce danych.
import pandas as pd
data = {'todate': [pd.Timestamp('2014-01-24 13:03:12.050000'), pd.Timestamp('2014-01-27 11:57:18.240000'), pd.Timestamp('2014-01-23 10:07:47.660000')],
'fromdate': [pd.Timestamp('2014-01-26 23:41:21.870000'), pd.Timestamp('2014-01-27 15:38:22.540000'), pd.Timestamp('2014-01-23 18:50:41.420000')]}
df = pd.DataFrame(data)
Dodaję nową kolumnę, diff
aby znaleźć różnicę między dwiema datami za pomocą
df['diff'] = df['fromdate'] - df['todate']
Dostaję diff
kolumnę, ale zawiera days
, gdy jest więcej niż 24 godziny.
todate fromdate diff
0 2014-01-24 13:03:12.050 2014-01-26 23:41:21.870 2 days 10:38:09.820000
1 2014-01-27 11:57:18.240 2014-01-27 15:38:22.540 0 days 03:41:04.300000
2 2014-01-23 10:07:47.660 2014-01-23 18:50:41.420 0 days 08:42:53.760000
Jak przekonwertować wyniki na same godziny i minuty (tj. Dni są konwertowane na godziny)?
python
pandas
datetime
python-datetime
sbalajis
źródło
źródło
To doprowadzało mnie do szału, ponieważ
.astype()
powyższe rozwiązanie nie działało dla mnie. Ale znalazłem inny sposób. Nie ustawiłem tego w czasie ani nic, ale może zadziałać dla innych:t1 = pd.to_datetime('1/1/2015 01:00') t2 = pd.to_datetime('1/1/2015 03:30') print pd.Timedelta(t2 - t1).seconds / 3600.0
... jeśli chcesz godzin. Lub:
print pd.Timedelta(t2 - t1).seconds / 60.0
... jeśli chcesz minut.
źródło
.total_seconds()
działa dla tych, którzy tego potrzebują()
dla.total_seconds()
ale nie.seconds
days + hours
. Minuty nie są wliczone.hh:mm
lubx hours y minutes
, wymagałoby dodatkowych obliczeń i formatowania ciągu.timedelta
matematyki i jest szybsza niż użycie.astype('timedelta64[h]')
timedelta
obiekty Pythona : Zobacz obsługiwane operacje.import pandas as pd # test data from OP, with values already in a datetime format data = {'to_date': [pd.Timestamp('2014-01-24 13:03:12.050000'), pd.Timestamp('2014-01-27 11:57:18.240000'), pd.Timestamp('2014-01-23 10:07:47.660000')], 'from_date': [pd.Timestamp('2014-01-26 23:41:21.870000'), pd.Timestamp('2014-01-27 15:38:22.540000'), pd.Timestamp('2014-01-23 18:50:41.420000')]} # test dataframe; the columns must be in a datetime format; use pandas.to_datetime if needed df = pd.DataFrame(data) # add a timedelta column if wanted. It's added here for information only # df['time_delta_with_sub'] = df.from_date.sub(df.to_date) # also works df['time_delta'] = (df.from_date - df.to_date) # create a column with timedelta as total hours, as a float type df['tot_hour_diff'] = (df.from_date - df.to_date) / pd.Timedelta(hours=1) # create a colume with timedelta as total minutes, as a float type df['tot_mins_diff'] = (df.from_date - df.to_date) / pd.Timedelta(minutes=1) # display(df) to_date from_date time_delta tot_hour_diff tot_mins_diff 0 2014-01-24 13:03:12.050 2014-01-26 23:41:21.870 2 days 10:38:09.820000 58.636061 3518.163667 1 2014-01-27 11:57:18.240 2014-01-27 15:38:22.540 0 days 03:41:04.300000 3.684528 221.071667 2 2014-01-23 10:07:47.660 2014-01-23 18:50:41.420 0 days 08:42:53.760000 8.714933 522.896000
Inne metody
.total_seconds()
została dodana i połączona, gdy główny programista była na wakacjach, i nie zostałaby zatwierdzona..total_xx
metod.# convert the entire timedelta to seconds # this is the same as td / timedelta(seconds=1) (df.from_date - df.to_date).dt.total_seconds() [out]: 0 211089.82 1 13264.30 2 31373.76 dtype: float64 # get the number of days (df.from_date - df.to_date).dt.days [out]: 0 2 1 0 2 0 dtype: int64 # get the seconds for hours + minutes + seconds, but not days # note the difference from total_seconds (df.from_date - df.to_date).dt.seconds [out]: 0 38289 1 13264 2 31373 dtype: int64
Inne zasoby
dateutil
:(df.from_date - df.to_date) / pd.Timedelta(hours=1)
(df.from_date - df.to_date).dt.total_seconds() / 3600
pandas.Series.dt.total_seconds
.dt
akcesordateutil
Moduł dostarcza potężnych rozszerzeń do standardowegodatetime
modułu.%%timeit
testimport pandas as pd # dataframe with 2M rows data = {'to_date': [pd.Timestamp('2014-01-24 13:03:12.050000'), pd.Timestamp('2014-01-27 11:57:18.240000')], 'from_date': [pd.Timestamp('2014-01-26 23:41:21.870000'), pd.Timestamp('2014-01-27 15:38:22.540000')]} df = pd.DataFrame(data) df = pd.concat([df] * 1000000).reset_index(drop=True) %%timeit (df.from_date - df.to_date) / pd.Timedelta(hours=1) [out]: 43.1 ms ± 1.05 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) %%timeit (df.from_date - df.to_date).astype('timedelta64[h]') [out]: 59.8 ms ± 1.29 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
źródło