Próbowałem zdefiniować niestandardową funkcję metryczną (F1-Score) w Keras (backend Tensorflow) zgodnie z następującymi zasadami:
def f1_score(tags, predicted):
tags = set(tags)
predicted = set(predicted)
tp = len(tags & predicted)
fp = len(predicted) - tp
fn = len(tags) - tp
if tp>0:
precision=float(tp)/(tp+fp)
recall=float(tp)/(tp+fn)
return 2*((precision*recall)/(precision+recall))
else:
return 0
Jak dotąd tak dobrze, ale kiedy próbuję zastosować to w kompilacji modelu:
model1.compile(loss="binary_crossentropy", optimizer=Adam(), metrics=[f1_score])
daje błąd:
TypeError Traceback (most recent call last)
<ipython-input-85-4eca4def003f> in <module>()
5 model1.add(Dense(output_dim=10, activation="sigmoid"))
6
----> 7 model1.compile(loss="binary_crossentropy", optimizer=Adam(), metrics=[f1_score])
8
9 h=model1.fit(X_train, Y_train, batch_size=500, nb_epoch=5, verbose=True, validation_split=0.1)
/home/buda/anaconda2/lib/python2.7/site-packages/keras/models.pyc in compile(self, optimizer, loss, metrics, sample_weight_mode, **kwargs)
522 metrics=metrics,
523 sample_weight_mode=sample_weight_mode,
--> 524 **kwargs)
525 self.optimizer = self.model.optimizer
526 self.loss = self.model.loss
/home/buda/anaconda2/lib/python2.7/site-packages/keras/engine/training.pyc in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, **kwargs)
664 else:
665 metric_fn = metrics_module.get(metric)
--> 666 self.metrics_tensors.append(metric_fn(y_true, y_pred))
667 if len(self.output_names) == 1:
668 self.metrics_names.append(metric_fn.__name__)
<ipython-input-84-b8a5752b6d55> in f1_score(tags, predicted)
4 #tf.convert_to_tensor(img.eval())
5
----> 6 tags = set(tags)
7 predicted = set(predicted)
8
/home/buda/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.pyc in __iter__(self)
493 TypeError: when invoked.
494 """
--> 495 raise TypeError("'Tensor' object is not iterable.")
496
497 def __bool__(self):
TypeError: 'Tensor' object is not iterable.
Jaki jest tutaj problem? Czy moje dane wejściowe funkcji f1_score nie są tablicami Tensorflow? Jeśli tak, gdzie / jak mogę je poprawnie przekonwertować?
tensorflow
keras
evaluation
Hendrik
źródło
źródło
eval
gdy masz na myślieval()
Odpowiedzi:
Musisz użyć funkcji zaplecza Keras . Niestety, nie obsługują one
&
-operatora, więc musisz zbudować obejście: Generujemy macierze wymiarubatch_size x 3
, w którym (np. Dla prawdziwego dodatniego) pierwsza kolumna jest wektorem prawdziwej ziemi, druga rzeczywistą prognozą, a trzecia jest rodzaj kolumny pomocnika etykiet, która zawiera w przypadku prawdziwie pozytywnych tylko te. Następnie sprawdzamy, które instancje są instancjami pozytywnymi, są przewidywane jako pozytywne, a pomocnik etykiet jest również pozytywny. To są prawdziwe pozytywy.Możemy zrobić ten analog z fałszywymi pozytywami, fałszywymi negatywami i prawdziwymi negatywami z pewnymi odwrotnymi obliczeniami etykiet.
Twój wskaźnik f1 może wyglądać następująco:
Ponieważ kalkulator zaplecza Keras zwraca nan dla dzielenia przez zero, nie potrzebujemy instrukcji if-else dla instrukcji return.
Edycja: Znalazłem całkiem niezły pomysł na dokładną implementację. Problem z naszym pierwszym podejściem polega na tym, że jest on tylko „przybliżony”, ponieważ jest obliczany okresowo, a następnie uśredniany. Można to również obliczyć po każdej epoce za pomocą
keras.callback
s. Pomysł znajdziesz tutaj: https://github.com/fchollet/keras/issues/5794Przykładową implementacją byłoby:
Aby sieć mogła wywoływać tę funkcję, wystarczy dodać ją do swoich wywołań zwrotnych, takich jak
Następnie możesz po prostu uzyskać dostęp do elementów
metrics
zmiennej.źródło