Jak wykonać filtr xBR lub hqx w XNA?

11

Chciałbym renderować moją grę za pomocą jednego z filtrów hqx (hq2x, hq3x lub hq4x) lub filtra xBR w module cieniującym.

Jak mogę to zrobić w XNA 4.0 i SM3?

Uwaga dodatkowa: to pytanie zostało znacznie zmienione, aby stało się tym, czym jest teraz.

test
źródło
Ciekawe pytanie, może punktowe próbkowanie z prymitywnym filtrem postprocesowym FXAA zrobiłoby coś podobnego ... Po prostu szybki pomysł, nie przetestowałem tego.
János Turánszki
en.wikipedia.org/wiki/Hqx z grubsza wyjaśnia, jak działają i zawiera linki do implementacji.
Adam
1
Prawdopodobnie interesujące github.com/pdjonov/hqnx
ClassicThunder
Mam wersję hacka działającą przy użyciu hqxSharpprojektu, ale cholera, jest powolna (co ostrzega). Potrzebuję czegoś, co może utrzymać przyzwoitą liczbę klatek na sekundę.
testuj
1
Myślałem również, że CG jest kompatybilny z DirectX 9, na którym iirc jest oparty na XNA. Spróbuj skompilować jeden z przykładów w łączu, tak jakby to był plik HLSL. github.com/libretro/common-shaders/tree/master/hqx
ClassicThunder

Odpowiedzi:

6

Możesz zmniejszyć liczbę instrukcji, używając operacji wektorowych: np. Zamiast

edr = bool4((w1.x < w2.x) && ir_lv1.x, 
            (w1.y < w2.y) && ir_lv1.y, 
            (w1.z < w2.z) && ir_lv1.z, 
            (w1.w < w2.w) && ir_lv1.w);

Możesz pisać

edr = (w1 < w2) && ir_lv1;

Operatory w HLSL można stosować do wektorów, nawet logicznych, takich jak &&dwie bool3wartości. Operatorzy ci wykonają operację komponentowo.

Kod modułu cieniującego

float2 texture_size;
float4x4 matrixTransform;

const static float coef = 2.0;
const static float3 yuv_weighted = float3(14.352, 28.176, 5.472);

sampler decal : register(s0);

float4 df(float4 A, float4 B)
{

    // begin optimization: reduction of 42 instruction slots
    float4 result = float4(A.x - B.x, A.y - B.y, A.z - B.z, A.w - B.w);

    return abs(result);
    // end optimization

    /* old code 

    //return float4(abs(A.x - B.x), abs(A.y - B.y), abs(A.z - B.z), abs(A.w - B.w));
    */
}

float4 weighted_distance(float4 a, float4 b, float4 c, float4 d, float4 e, float4 f, float4 g, float4 h)
{
    return (df(a, b) + df(a, c) + df(d, e) + df(d, f) + 4.0 * df(g, h));
}

float4 main_vertex(inout float2 texCoord : TEXCOORD0, inout float4 position : SV_Position) : TEXCOORD1
{
    float2 ps = float2(1.0 / texture_size.x, 1.0 / texture_size.y);
    float4 t1;

    t1.xy = float2(ps.x, 0); // F
    t1.zw = float2(0, ps.y); // H

    position = mul(position, matrixTransform);

    return t1;
}

/*    FRAGMENT SHADER    */
float4 main_fragment(float4 p : POSITION0, float2 tex0 : TEXCOORD0, float4 tex1 : TEXCOORD1) : COLOR0
{
    bool4 edr, edr_left, edr_up, px; // px = pixel, edr = edge detection rule
    bool4 ir_lv1, ir_lv2_left, ir_lv2_up;
    bool4 nc; // new_color
    bool4 fx, fx_left, fx_up; // inequations of straight lines.

    float2 fp = frac(tex0 * texture_size);
    float2 dx = tex1.xy;
    float2 dy = tex1.zw;

    float3 A = tex2D(decal, tex0 - dx - dy).xyz;
    float3 B = tex2D(decal, tex0 - dy).xyz;
    float3 C = tex2D(decal, tex0 + dx - dy).xyz;
    float3 D = tex2D(decal, tex0 - dx).xyz;
    float3 E = tex2D(decal, tex0).xyz;
    float3 F = tex2D(decal, tex0 + dx).xyz;
    float3 G = tex2D(decal, tex0 - dx + dy).xyz;
    float3 H = tex2D(decal, tex0 + dy).xyz;
    float3 I = tex2D(decal, tex0 + dx + dy).xyz;
    float3 A1 = tex2D(decal, tex0 - dx - 2.0*dy).xyz;
    float3 C1 = tex2D(decal, tex0 + dx - 2.0*dy).xyz;
    float3 A0 = tex2D(decal, tex0 - 2.0*dx - dy).xyz;
    float3 G0 = tex2D(decal, tex0 - 2.0*dx + dy).xyz;
    float3 C4 = tex2D(decal, tex0 + 2.0*dx - dy).xyz;
    float3 I4 = tex2D(decal, tex0 + 2.0*dx + dy).xyz;
    float3 G5 = tex2D(decal, tex0 - dx + 2.0*dy).xyz;
    float3 I5 = tex2D(decal, tex0 + dx + 2.0*dy).xyz;
    float3 B1 = tex2D(decal, tex0 - 2.0*dy).xyz;
    float3 D0 = tex2D(decal, tex0 - 2.0*dx).xyz;
    float3 H5 = tex2D(decal, tex0 + 2.0*dy).xyz;
    float3 F4 = tex2D(decal, tex0 + 2.0*dx).xyz;

    float4 b = mul(float4x3(B, D, H, F), yuv_weighted);
    float4 c = mul(float4x3(C, A, G, I), yuv_weighted);
    float4 e = mul(float4x3(E, E, E, E), yuv_weighted);
    float4 d = b.yzwx;
    float4 f = b.wxyz;
    float4 g = c.zwxy;
    float4 h = b.zwxy;
    float4 i = c.wxyz;

    float4 i4 = mul(float4x3(I4, C1, A0, G5), yuv_weighted);
    float4 i5 = mul(float4x3(I5, C4, A1, G0), yuv_weighted);
    float4 h5 = mul(float4x3(H5, F4, B1, D0), yuv_weighted);
    float4 f4 = h5.yzwx;

    float4 Ao = float4(1.0, -1.0, -1.0, 1.0);
    float4 Bo = float4(1.0, 1.0, -1.0, -1.0);
    float4 Co = float4(1.5, 0.5, -0.5, 0.5);
    float4 Ax = float4(1.0, -1.0, -1.0, 1.0);
    float4 Bx = float4(0.5, 2.0, -0.5, -2.0);
    float4 Cx = float4(1.0, 1.0, -0.5, 0.0);
    float4 Ay = float4(1.0, -1.0, -1.0, 1.0);
    float4 By = float4(2.0, 0.5, -2.0, -0.5);
    float4 Cy = float4(2.0, 0.0, -1.0, 0.5);

    // These inequations define the line below which interpolation occurs.
    fx.x = (Ao.x*fp.y + Bo.x*fp.x > Co.x);
    fx_left.x = (Ax.x*fp.y + Bx.x*fp.x > Cx.x);
    fx_up.x = (Ay.x*fp.y + By.x*fp.x > Cy.x);

    fx.y = (Ao.y*fp.y + Bo.y*fp.x > Co.y);
    fx_left.y = (Ax.y*fp.y + Bx.y*fp.x > Cx.y);
    fx_up.y = (Ay.y*fp.y + By.y*fp.x > Cy.y);

    fx.z = (Ao.z*fp.y + Bo.z*fp.x > Co.z);
    fx_left.z = (Ax.z*fp.y + Bx.z*fp.x > Cx.z);
    fx_up.z = (Ay.z*fp.y + By.z*fp.x > Cy.z);

    fx.w = (Ao.w*fp.y + Bo.w*fp.x > Co.w);
    fx_left.w = (Ax.w*fp.y + Bx.w*fp.x > Cx.w);
    fx_up.w = (Ay.w*fp.y + By.w*fp.x > Cy.w);

    //ir_lv1.x = ((e.x != f.x) && (e.x != h.x));
    //ir_lv1.y = ((e.y != f.y) && (e.y != h.y));
    //ir_lv1.z = ((e.z != f.z) && (e.z != h.z));
    //ir_lv1.w = ((e.w != f.w) && (e.w != h.w));
    ir_lv1 = ((e != f) && (e != h));

    //ir_lv2_left.x = ((e.x != g.x) && (d.x != g.x));
    //ir_lv2_left.y = ((e.y != g.y) && (d.y != g.y));
    //ir_lv2_left.z = ((e.z != g.z) && (d.z != g.z));
    //ir_lv2_left.w = ((e.w != g.w) && (d.w != g.w));
    ir_lv2_left = ((e != g) && (d != g));

    //ir_lv2_up.x = ((e.x != c.x) && (b.x != c.x));
    //ir_lv2_up.y = ((e.y != c.y) && (b.y != c.y));
    //ir_lv2_up.z = ((e.z != c.z) && (b.z != c.z));
    //ir_lv2_up.w = ((e.w != c.w) && (b.w != c.w));
    ir_lv2_up = ((e != c) && (b != c));

    float4 w1 = weighted_distance(e, c, g, i, h5, f4, h, f);
    float4 w2 = weighted_distance(h, d, i5, f, i4, b, e, i);

    // begin optimization: reduction of 6 instruction slots
    float4 df_fg = df(f, g);
    float4 df_hc = df(h, c);
    // end optimization

    float4 t1 = (coef * df_fg);
    float4 t2 = df_hc;
    float4 t3 = df_fg;
    float4 t4 = (coef * df_hc);

    //edr = bool4((w1.x < w2.x) && ir_lv1.x, 
    //            (w1.y < w2.y) && ir_lv1.y, 
    //            (w1.z < w2.z) && ir_lv1.z, 
    //            (w1.w < w2.w) && ir_lv1.w);
    edr = (w1 < w2) && ir_lv1;

    //edr_left = bool4((t1.x <= t2.x) && ir_lv2_left.x, 
    //                 (t1.y <= t2.y) && ir_lv2_left.y, 
    //                 (t1.z <= t2.z) && ir_lv2_left.z, 
    //                 (t1.w <= t2.w) && ir_lv2_left.w);
    edr_left = (t1 <= t2) && ir_lv2_left;

    //edr_up = bool4((t4.x <= t3.x) && ir_lv2_up.x, 
    //               (t4.y <= t3.y) && ir_lv2_up.y, 
    //               (t4.z <= t3.z) && ir_lv2_up.z, 
    //               (t4.w <= t3.w) && ir_lv2_up.w);
    edr_up = (t4 <= t3) && ir_lv2_up;

    //nc.x = (edr.x && (fx.x || edr_left.x && fx_left.x || edr_up.x && fx_up.x));
    //nc.y = (edr.y && (fx.y || edr_left.y && fx_left.y || edr_up.y && fx_up.y));
    //nc.z = (edr.z && (fx.z || edr_left.z && fx_left.z || edr_up.z && fx_up.z));
    //nc.w = (edr.w && (fx.w || edr_left.w && fx_left.w || edr_up.w && fx_up.w));
    nc = (edr && (fx || edr_left && fx_left || edr_up && fx_up));

    // to actually compile this shader, uncomment the following line
    // which reduces the instruction count to under 512
    //nc.zw = (float2)0;

    t1 = df(e, f);
    t2 = df(e, h);

    //px = bool4(t1.x <= t2.x, 
    //           t1.y <= t2.y, 
    //           t1.z <= t2.z, 
    //           t1.w <= t2.w);
    px = t1 <= t2;

    float3 res = nc.x ? px.x ? F : H : nc.y ? px.y ? B : F : nc.z ? px.z ? D : B : nc.w ? px.w ? H : D : E;

    return float4(res.x, res.y, res.z, 1.0);
}

technique mainTech
{
    pass mainPass
    {
        VertexShader = compile vs_3_0 main_vertex();
        PixelShader = compile ps_3_0 main_fragment();
    }
}

Kino

Oryginalny obraz przez Redshrike został zmniejszony przez współczynnik 4.

  • Próbkowanie punktowe

przed

  • xBR

po

zogi
źródło
Użyłem już tych optymalizacji w swojej odpowiedzi. W ten sposób udało mi się ominąć błąd slotu instrukcji, który widziałem.
przetestuj
Nieważne więc. Byłem trochę za wolny :)
zogi
ir_lv1 = ((e != f) && (e != h)); ir_lv2_left = ((e != g) && (d != g)); ir_lv2_up = ((e != c) && (b != c)); Są to dobre optymalizacje, które przegapiłem, które znalazłeś, nie potrzebowałem ich do mojego problemu, ponieważ byłem w stanie zmniejszyć liczbę instrukcji dzięki innym optymalizacjom.
przetestuj
Dobrze. Niezły temat. Nie słyszałem o tych algorytmach przed twoim pytaniem. Znalazłem ten post na blogu o hqx, który pomógł mi nieco zrozumieć algorytm. Gorąco polecam, jeśli jesteś zainteresowany.
zogi
6

Mam to działa. Nie używa filtra hqx, używa filtra xBR (który preferuję). Dla mnie to nie jest problem. Jeśli potrzebujesz filtra hqx, musisz przekonwertować pliki .cg na odpowiedni odpowiednik XNA.

Ze względów kompletności i wyszukiwania będę edytować pytanie, aby było bardziej zwięzłe, a następnie opublikuję wszystkie istotne informacje, aby odpowiedzieć na pytanie tutaj.


Krok 1: Konfiguracja kodu gry

Najpierw najprawdopodobniej będziesz chciał ustawić cel renderowania, w którym narysujesz grę w skali 1: 1, a następnie wyrenderujesz filtr.

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace xbr
{
    /// <summary>
    /// This is the main type for your game
    /// </summary>
    public class Game1 : Microsoft.Xna.Framework.Game
    {

        GraphicsDeviceManager graphics;
        SpriteBatch spriteBatch;
        RenderTarget2D renderTarget;
        Effect xbrEffect;
        Matrix projection;
        Matrix halfPixelOffset = Matrix.CreateTranslation(-0.5f, -0.5f, 0);
        Texture2D pretend240x160Scene;

        // the bounds of your 1:1 scene
        Rectangle renderBounds = new Rectangle(0, 0, 240, 160);

        // the bounds of your output scene (same w:h ratio)
        Rectangle outputBounds = new Rectangle(0, 0, 720, 480);

        public Game1()
        {
           base.Content.RootDirectory = "Content";

           this.graphics = new GraphicsDeviceManager(this);
           this.graphics.PreferredBackBufferWidth = outputBounds.Width;
           this.graphics.PreferredBackBufferHeight = outputBounds.Height;
        }

        /// <summary>
        /// Allows the game to perform any initialization it needs to before starting to run.
        /// This is where it can query for any required services and load any non-graphic
        /// related content.  Calling base.Initialize will enumerate through any components
        /// and initialize them as well.
        /// </summary>
        protected override void Initialize()
        {
            // TODO: Add your initialization logic here

            base.Initialize();
        }

        /// <summary>
        /// LoadContent will be called once per game and is the place to load
        /// all of your content.
        /// </summary>
        protected override void LoadContent()
        {
            // Create a new SpriteBatch, which can be used to draw textures.
            this.spriteBatch = new SpriteBatch(base.GraphicsDevice);
            this.xbrEffect = Content.Load<Effect>("xbr");

            // a fake scene that is a 240x160 image
            this.pretend240x160Scene = base.Content.Load<Texture2D>("240x160Scene");
            this.renderTarget = new RenderTarget2D(base.GraphicsDevice, this.renderBounds.Width, this.renderBounds.Height);

            // default vertex matrix for the vertex method
            this.projection = Matrix.CreateOrthographicOffCenter(0, this.outputBounds.Width, this.outputBounds.Height, 0, 0, 1);

            // set the values of this effect, should only have to do this once
            this.xbrEffect.Parameters["matrixTransform"].SetValue(halfPixelOffset * projection);
            this.xbrEffect.Parameters["textureSize"].SetValue(new float[] { renderBounds.Width, renderBounds.Height });
        }

        /// <summary>
        /// UnloadContent will be called once per game and is the place to unload
        /// all content.
        /// </summary>
        protected override void UnloadContent()
        {
        }

        /// <summary>
        /// Allows the game to run logic such as updating the world,
        /// checking for collisions, gathering input, and playing audio.
        /// </summary>
        /// <param name="gameTime">Provides a snapshot of timing values.</param>
        protected override void Update(GameTime gameTime)
        {
            base.Update(gameTime);
        }

        /// <summary>
        /// This is called when the game should draw itself.
        /// </summary>
        /// <param name="gameTime">Provides a snapshot of timing values.</param>
        protected override void Draw(GameTime gameTime)
        {
            base.GraphicsDevice.Clear(Color.CornflowerBlue);
            base.GraphicsDevice.SetRenderTarget(this.renderTarget);

            // draw your scene here scaled 1:1. for now I'll just draw
            // my fake 240x160 texture
            spriteBatch.Begin(SpriteSortMode.Deferred, BlendState.NonPremultiplied, 
                              SamplerState.PointClamp, null, null);

            spriteBatch.Draw(this.pretend240x160Scene, this.renderBounds, this.renderBounds, Color.White);

            spriteBatch.End();

            // now we'll draw to the back buffer
            base.GraphicsDevice.SetRenderTarget(null);

            // this renders the effect
            spriteBatch.Begin(SpriteSortMode.Immediate, BlendState.NonPremultiplied, 
                              SamplerState.PointClamp, null, null, this.xbrEffect);

            spriteBatch.Draw(this.renderTarget, this.outputBounds, this.renderBounds, Color.White);
            spriteBatch.End();

            base.Draw(gameTime);
        }
    }
}

Krok 2: Plik efektów

Poniżej znajduje się plik efektów zgodny z XNA do wykonania filtru xBR.

// all identified optimizations have been amalgamated into this file
float2 textureSize;
float4x4 matrixTransform;

const static float coef = 2.0;
const static float3 yuv_weighted = float3(14.352, 28.176, 5.472);

sampler decal : register(s0);

float4 df(float4 A, float4 B)
{
    return abs(A - B);
}

float4 weighted_distance(float4 a, float4 b, float4 c, float4 d, 
                         float4 e, float4 f, float4 g, float4 h)
{
    return (df(a, b) + df(a, c) + df(d, e) + df(d, f) + 4.0 * df(g, h));
}

float4 main_vertex(inout float4 col0 : COLOR0, inout float2 tex0 : TEXCOORD0, 
                   inout float4 pos0 : POSITION0) : TEXCOORD1
{
    float2 ps = 1.0 / textureSize;

    pos0 = mul(pos0, matrixTransform);

    return float4(ps.x, 0, 0, ps.y);
}

float4 main_fragment(float4 pos0 : POSITION0, float2 tex0 : TEXCOORD0, 
                     float4 tex1 : TEXCOORD1) : COLOR0
{
    bool4 edr, edr_left, edr_up, px; // px = pixel, edr = edge detection rule
    bool4 ir_lv1, ir_lv2_left, ir_lv2_up;
    bool4 nc; // new_color
    bool4 fx, fx_left, fx_up; // inequations of straight lines.

    float2 fp = frac(tex0 * textureSize);
    float2 dx = tex1.xy;
    float2 dy = tex1.zw;

    float3 A  = tex2D(decal, tex0 - dx - dy).xyz;
    float3 B  = tex2D(decal, tex0 - dy).xyz;
    float3 C  = tex2D(decal, tex0 + dx - dy).xyz;
    float3 D  = tex2D(decal, tex0 - dx).xyz;
    float3 E  = tex2D(decal, tex0).xyz;
    float3 F  = tex2D(decal, tex0 + dx).xyz;
    float3 G  = tex2D(decal, tex0 - dx + dy).xyz;
    float3 H  = tex2D(decal, tex0 + dy).xyz;
    float3 I  = tex2D(decal, tex0 + dx + dy).xyz;
    float3 A1 = tex2D(decal, tex0 - dx - 2.0 * dy).xyz;
    float3 C1 = tex2D(decal, tex0 + dx - 2.0 * dy).xyz;
    float3 A0 = tex2D(decal, tex0 - 2.0 * dx - dy).xyz;
    float3 G0 = tex2D(decal, tex0 - 2.0 * dx + dy).xyz;
    float3 C4 = tex2D(decal, tex0 + 2.0 * dx - dy).xyz;
    float3 I4 = tex2D(decal, tex0 + 2.0 * dx + dy).xyz;
    float3 G5 = tex2D(decal, tex0 - dx + 2.0 * dy).xyz;
    float3 I5 = tex2D(decal, tex0 + dx + 2.0 * dy).xyz;
    float3 B1 = tex2D(decal, tex0 - 2.0 * dy).xyz;
    float3 D0 = tex2D(decal, tex0 - 2.0 * dx).xyz;
    float3 H5 = tex2D(decal, tex0 + 2.0 * dy).xyz;
    float3 F4 = tex2D(decal, tex0 + 2.0 * dx).xyz;

    float4 b = mul(float4x3(B, D, H, F), yuv_weighted);
    float4 c = mul(float4x3(C, A, G, I), yuv_weighted);
    float4 e = mul(float4x3(E, E, E, E), yuv_weighted);
    float4 d = b.yzwx;
    float4 f = b.wxyz;
    float4 g = c.zwxy;
    float4 h = b.zwxy;
    float4 i = c.wxyz;

    float4 i4 = mul(float4x3(I4, C1, A0, G5), yuv_weighted);
    float4 i5 = mul(float4x3(I5, C4, A1, G0), yuv_weighted);
    float4 h5 = mul(float4x3(H5, F4, B1, D0), yuv_weighted);
    float4 f4 = h5.yzwx;

    float4 Ao = float4(1.0, -1.0, -1.0, 1.0);
    float4 Bo = float4(1.0, 1.0, -1.0, -1.0);
    float4 Co = float4(1.5, 0.5, -0.5, 0.5);
    float4 Ax = float4(1.0, -1.0, -1.0, 1.0);
    float4 Bx = float4(0.5, 2.0, -0.5, -2.0);
    float4 Cx = float4(1.0, 1.0, -0.5, 0.0);
    float4 Ay = float4(1.0, -1.0, -1.0, 1.0);
    float4 By = float4(2.0, 0.5, -2.0, -0.5);
    float4 Cy = float4(2.0, 0.0, -1.0, 0.5);

    // These inequations define the line below which interpolation occurs.
    fx.x = (Ao.x * fp.y + Bo.x * fp.x > Co.x);
    fx.y = (Ao.y * fp.y + Bo.y * fp.x > Co.y);
    fx.z = (Ao.z * fp.y + Bo.z * fp.x > Co.z);
    fx.w = (Ao.w * fp.y + Bo.w * fp.x > Co.w);

    fx_left.x = (Ax.x * fp.y + Bx.x * fp.x > Cx.x);
    fx_left.y = (Ax.y * fp.y + Bx.y * fp.x > Cx.y);
    fx_left.z = (Ax.z * fp.y + Bx.z * fp.x > Cx.z);
    fx_left.w = (Ax.w * fp.y + Bx.w * fp.x > Cx.w);

    fx_up.x = (Ay.x * fp.y + By.x * fp.x > Cy.x);
    fx_up.y = (Ay.y * fp.y + By.y * fp.x > Cy.y);
    fx_up.z = (Ay.z * fp.y + By.z * fp.x > Cy.z);
    fx_up.w = (Ay.w * fp.y + By.w * fp.x > Cy.w);

    ir_lv1      = ((e != f) && (e != h));
    ir_lv2_left = ((e != g) && (d != g));
    ir_lv2_up   = ((e != c) && (b != c));

    float4 w1 = weighted_distance(e, c, g, i, h5, f4, h, f);
    float4 w2 = weighted_distance(h, d, i5, f, i4, b, e, i);
    float4 df_fg = df(f, g);
    float4 df_hc = df(h, c);
    float4 t1 = (coef * df_fg);
    float4 t2 = df_hc;
    float4 t3 = df_fg;
    float4 t4 = (coef * df_hc);

    edr      = (w1 < w2)  && ir_lv1;
    edr_left = (t1 <= t2) && ir_lv2_left;
    edr_up   = (t4 <= t3) && ir_lv2_up;

    nc = (edr && (fx || edr_left && fx_left || edr_up && fx_up));

    t1 = df(e, f);
    t2 = df(e, h);
    px = t1 <= t2;

    float3 res = nc.x ? px.x ? F : H : 
                 nc.y ? px.y ? B : F : 
                 nc.z ? px.z ? D : B : 
                 nc.w ? px.w ? H : D : E;

    return float4(res.xyz, 1.0);
}

technique T0
{
    pass P0
    {
        VertexShader = compile vs_3_0 main_vertex();
        PixelShader = compile ps_3_0 main_fragment();
    }
}

Wyniki

Tekstura, której użyłem do renderowania 240 x 160:

Wejście xBR

Dane wyjściowe z uruchomienia gry:

Wyjście xBR

Źródła

Plik .cg że przekształcony XNA kompatybilnym pochodzi tutaj . Więc kredyty należą się do nich za napisanie tego.

test
źródło