Ponieważ błąd standardowy regresji liniowej jest zwykle podawany dla zmiennej odpowiedzi, zastanawiam się, jak uzyskać przedziały ufności w innym kierunku - np. Dla przecięcia x. Jestem w stanie wyobrazić sobie, co to może być, ale jestem pewien, że musi istnieć prosty sposób, aby to zrobić. Poniżej znajduje się przykład w R na temat wizualizacji tego:
set.seed(1)
x <- 1:10
a <- 20
b <- -2
y <- a + b*x + rnorm(length(x), mean=0, sd=1)
fit <- lm(y ~ x)
XINT <- -coef(fit)[1]/coef(fit)[2]
plot(y ~ x, xlim=c(0, XINT*1.1), ylim=c(-2,max(y)))
abline(h=0, lty=2, col=8); abline(fit, col=2)
points(XINT, 0, col=4, pch=4)
newdat <- data.frame(x=seq(-2,12,len=1000))
# CI
pred <- predict(fit, newdata=newdat, se.fit = TRUE)
newdat$yplus <-pred$fit + 1.96*pred$se.fit
newdat$yminus <-pred$fit - 1.96*pred$se.fit
lines(yplus ~ x, newdat, col=2, lty=2)
lines(yminus ~ x, newdat, col=2, lty=2)
# approximate CI of XINT
lwr <- newdat$x[which.min((newdat$yminus-0)^2)]
upr <- newdat$x[which.min((newdat$yplus-0)^2)]
abline(v=c(lwr, upr), lty=3, col=4)
r
regression
confidence-interval
bootstrap
Marc w pudełku
źródło
źródło
library(boot); sims <- boot(data.frame(x, y), function(d, i) { fit <- lm(y ~ x, data = d[i,]) -coef(fit)[1]/coef(fit)[2] }, R = 1e4); points(quantile(sims$t, c(0.025, 0.975)), c(0, 0))
. W przypadku odwrotnych przedziałów prognoz plik pomocychemCal:::inverse.predict
zawiera następujące odniesienie, które może również pomóc w uzyskaniu CI: Massart, LM, Vandenginste, BGM, Buydens, LMC, De Jong, S., Lewi, PJ, Smeyers-Verbeke, J. (1997) ) Handbook of Chemometrics and Qualimetrics: Part A, str. 1. 200Odpowiedzi:
Jak obliczyć przedział ufności przecięcia X w regresji liniowej?
Założenia
3 procedury do obliczania przedziału ufności na przechwytywaniu x
Rozszerzenie Taylor pierwszego rzędu
Twój model toY= a X+ b z szacowanym odchyleniem standardowym σza i σb na za i b parametry i szacowana kowariancja σa b . Ty rozwiązujesz
Następnie odchylenie standardoweσX na X jest dany przez:
MIB
Zobacz kod od Marc w polu „ Jak obliczyć przedział ufności punktu przecięcia x w regresji liniowej”? .
CAPITANI-POLLASTRI
CAPITANI-POLLASTRI zapewnia funkcję skumulowanego rozkładu i funkcję gęstości dla stosunku dwóch skorelowanych normalnych zmiennych losowych. Można go użyć do obliczenia przedziału ufności punktu przecięcia x w regresji liniowej. Ta procedura daje (prawie) identyczne wyniki jak te z MIB.
Rzeczywiście, używając zwykłego najmniejszego kwadratu i zakładając normalność błędów,β^∼ N.( β,σ2)(XT.X)- 1) (zweryfikowane) i β^ są skorelowane (zweryfikowane).
Procedura jest następująca:
Porównanie 3 procedur
Procedury są porównywane przy użyciu następującej konfiguracji danych:
10000 różnych próbek jest generowanych i analizowanych przy użyciu 3 metod. Kod (R) używany do generowania i analizy można znaleźć na stronie : https://github.com/adrienrenaud/stackExchange/blob/master/crossValidated/q221630/answer.ipynb
Wnioski
Rozkład punktów przecięcia x jest asymetryczny. Uzasadnia to asymetryczny przedział ufności. MIB i CAPITANI-POLLASTRI dają równoważne wyniki. CAPITANI-POLLASTRI mają fajne uzasadnienie teoretyczne i daje podstawy dla MIB. MIB i CAPITANI-POLLASTRI cierpią z powodu umiarkowanego niedostatecznego zasięgu i mogą być używane do ustalania przedziałów ufności.
źródło
Polecam ładowanie resztek:
Na wykresie pokazano punkty, w których dolna / górna granica przedziału ufności prognoz przecina oś. Nie sądzę, że są to granice ufności przechwytywania, ale może są to przybliżone przybliżenie.
źródło