“Regresja logistyczna Sklearn” Kod odpowiedzi

Algorytm regresji logistycznej w Pythonie

# import the class
from sklearn.linear_model import LogisticRegression

# instantiate the model (using the default parameters)
logreg = LogisticRegression()

# fit the model with data
logreg.fit(X_train,y_train)

#
y_pred=logreg.predict(X_test)
Wide-eyed Whale

Scikit regresji wielomianowej nauki

model1 = LogisticRegression(random_state=0, multi_class='multinomial', penalty='none', solver='newton-cg').fit(X_train, y_train)
preds = model1.predict(X_test)

#print the tunable parameters (They were not tuned in this example, everything kept as default)
params = model1.get_params()
print(params)

{'C': 1.0, 'class_weight': None, 'dual': False, 'fit_intercept': True, 'intercept_scaling': 1, 'l1_ratio': None, 'max_iter': 100, 'multi_class': 'multinomial', 'n_jobs': None, 'penalty': 'none', 'random_state': 0, 'solver': 'newton-cg', 'tol': 0.0001, 'verbose': 0, 'warm_start': False}
Adventurous Alligator

Regresja logistyczna Sklearn

LogisticRegression(penalty='l2',C=1.0, fit_intercept=True, max_iter=100)
VIvek

Algorytm regresji logistycznej w Pythonie

# import the metrics class
from sklearn import metrics
cnf_matrix = metrics.confusion_matrix(y_test, y_pred)
cnf_matrix
Wide-eyed Whale

Odpowiedzi podobne do “Regresja logistyczna Sklearn”

Pytania podobne do “Regresja logistyczna Sklearn”

Więcej pokrewnych odpowiedzi na “Regresja logistyczna Sklearn” w Python

Przeglądaj popularne odpowiedzi na kod według języka

Przeglądaj inne języki kodu