Jakie podejścia są stosowane w praktyce do szacowania liczby warunków dużych rzadkich matryc?
linear-algebra
matrix
conditioning
Allan P. Engsig-Karup
źródło
źródło
Odpowiedzi:
Bardzo często rzutuje się macierz na przestrzeń Kryłowa (generowaną przez wielokrotne stosowanie na wektorze), a następnie uzyskuje się numer stanu rzutowanej macierzy. W PETSc można to zrobić automatycznie, używając -ksp_monitor_singular_value.
źródło
Moja poprzednia odpowiedź zaleciła artykuł Dixona z 1983 r., „Szacowanie ekstremalnych wartości własnych i liczb warunkowych macierzy” . Zasadniczo sprowadza się do niewielkiej liczby multiplikacji macierz-wektor i rozwiązuje przeciwko losowym wektorom Gaussa i jest zasadniczo algorytmem mocy połączonym z granicami błędu a priori, które nie są zależne od spektrum operatora.
Jednak w tym samym sensie, że algorytmy Kryłowa są zdecydowanie lepsze niż algorytm mocy, Kuczyński i Woźniakowski analizowali analogię do algorytmu Dixona opartą na rozkładach Lanczosa, które średnio zbiegają się znacznie szybciej.
źródło