Biorąc pod uwagę qubit-system, a zatem możliwe wyniki pomiarów, w podstawie , , , , jak mogę przygotować stan, gdzie:{ | 00 ⟩ | 01 ⟩ | 10 ⟩ | 11 ⟩ }
możliwe są tylko z wyników pomiarów (powiedzmy, , , )?4 | 00 ⟩ | 01 ⟩ | 10 ⟩
te pomiary są równie prawdopodobne? (jak stan Bella, ale dla wyników)
00
i11
notacji Diraca? Próbowałem$\ket{00}$
i nie udało mi się.Odpowiedzi:
Złam problem na części.
Że mamy już wysłane do 1∣00⟩ . Możemy wysłać to do113)√| 00 ⟩ + 2√3)√| 01 ⟩ przez√13)√| 00 ⟩ + ( 12)( 1 + i ) ) 2√3)√| 01 ⟩ + ( 12)(1−i))2√3√∣10⟩ . To spełnia twoje wymagania ze wszystkimi prawdopodobieństwami 1SWAP−−−−−−√ ale z różnymi fazami. Jeśli chcesz użyć bramek przesunięcia fazowego na każdej z nich, aby uzyskać fazy, które chcesz, jeśli chcesz, aby wszystkie były równe.13
Teraz w jaki sposób dostać się z do 1∣00⟩ ? Jeśli to był113√∣00⟩+2√3√∣01⟩ moglibyśmy zrobić Hadamard na drugim qubitu. Nie jest to łatwe, ale nadal możemy używać jednostki tylko na drugim kubicie. Dokonuje tego operator obrotu wyłącznie na drugim kubicie przez faktoring as12√∣00⟩+12√∣01⟩
działa. Rozłóż to na bardziej podstawowe bramy, jeśli potrzebujesz.
W sumie mamy:
źródło
I'll tell you how to create any two qubit pure state you might ever be interested in. Hopefully you can use it to generate the state you want.
Using a single qubit rotation followed by a cnot, it is possible to create states of the form
Then you can apply an arbitrary unitary,U , to the first qubit. This rotates the |0⟩ and |1⟩ states to new states that we'll call |a0⟩ and |a1⟩ ,
Our entangled state is then
We can similarly apply a unitary to the second qubit.
which gives us the state
źródło
Here is how you might go about designing such a circuit.
Suppose that you would like to produce the state |ψ⟩=13√(|00⟩+|01⟩+|10⟩) . Note the normalisation of 1/3–√ , which is necessary for |ψ⟩ to be a unit vector.
If we want to consider a straightforward way to realise this state, we might want to think in terms of the first qubit being a control, which determines whether the second qubit should be in the state|+⟩=12√(|0⟩+|1⟩) , or in the state |0⟩ , by using some conditional operations. This motivates considering the decomposition
Which specific operations you would apply to realise these transformations — i.e. which single-qubit transformation would be most suitable for step 2, and how you might decompose the two-qubit unitary in step 3 into CNOTs and Pauli rotations — is a simple exercise. (Hint: use the fact that bothX and the Hadamard are self-inverse to find as simple a decomposition as possible in step 3.)
źródło
Here is an implementation of a circuit producing state|ψ⟩=13√(|00⟩+|01⟩+|10⟩) on IBM Q:
Note thatθ=1.2310 for Ry on q0 . θ=π4 and θ=−π4 for first and second Ry on q1 .
TheRy on q0 prepares qubit in superposition |q0⟩=23−−√|0⟩+13√|1⟩ . Ry gates on q1 and CNOT implements controlled Hadamard gate. When q0 is in state |0⟩ the Hadamard acts on q1 thanks to negation X . This happens with probability 23 . Since Hadamard turns |0⟩ to |+⟩ , i.e. equally distributed superposition, final states |00⟩ and |01⟩ can be measured with probability 13 . When q0 is in state |1⟩ , controled Hadamard does not act and state |10⟩ is measured. Since q0 is in state |1⟩ with probability 13 , |10⟩ is measured also with probability 13 .
źródło