Używam sieci neuronowych do rozwiązywania różnych problemów związanych z uczeniem maszynowym. Używam Pythona i Pybrain, ale ta biblioteka jest prawie wycofana. Czy istnieją inne dobre alternatywy w
Służy do pytań dotyczących analizy danych związanych z językiem programowania Python. Nie jest przeznaczony do ogólnych pytań związanych z kodowaniem (-> stackoverflow).
Używam sieci neuronowych do rozwiązywania różnych problemów związanych z uczeniem maszynowym. Używam Pythona i Pybrain, ale ta biblioteka jest prawie wycofana. Czy istnieją inne dobre alternatywy w
Jestem początkujących do nauki danych i nie rozumiem różnicę między fiti fit_transformmetody w scikit-learn. Czy ktoś może po prostu wyjaśnić, dlaczego potrzebujemy transformacji danych? Co to znaczy dopasowywanie modelu do danych treningowych i przekształcanie w dane testowe? Czy oznacza to na...
Właśnie zaczynam opracowywać aplikację do uczenia maszynowego do celów akademickich. Obecnie używam R i trenuję się w tym. Jednak w wielu miejscach widziałem ludzi używających Pythona . Z czego korzystają ludzie w środowisku akademickim i przemyśle i jakie jest
Próbuję uruchomić SVR przy użyciu scikit learn (python) na zbiorze danych szkoleniowych posiadającym 595605 wierszy i 5 kolumn (funkcji) oraz testowym zbiorze danych posiadającym 397070 wierszy. Dane zostały wstępnie przetworzone i uregulowane. Jestem w stanie z powodzeniem uruchomić przykłady...
Od dłuższego czasu używam pand. Ale, że nie rozumie, co jest różnica między isna()i isnull()w pand. I, co ważniejsze, którego użyć do zidentyfikowania brakujących wartości w ramce danych. Jaka jest podstawowa różnica bazowy jak wartość nie jest wykrywany jako albo naalbo...
Mam problem z zastosowaniem drzewa decyzyjnego / losowego lasu. Próbuję dopasować problem, który zawiera zarówno liczby, jak i ciągi znaków (takie jak nazwa kraju). Teraz biblioteka scikit-learn przyjmuje tylko liczby jako parametry, ale chcę wstrzyknąć ciągi, a także niosą one znaczną ilość...
Tło problemu: Pracuję nad projektem, który obejmuje pliki dziennika podobne do plików znalezionych w przestrzeni monitorowania IT (według mojego najlepszego zrozumienia przestrzeni IT). Te pliki dziennika są danymi szeregów czasowych, uporządkowanymi w setki / tysiące wierszy o różnych...
Próbuję zacząć uczyć się o RNN i używam Keras. Rozumiem podstawowe założenie waniliowych warstw RNN i LSTM, ale mam problem ze zrozumieniem pewnej technicznej kwestii szkolenia. W dokumentacji keras napisano, że wejście do warstwy RNN musi mieć kształt (batch_size, timesteps, input_dim). Sugeruje...
Jakie jest właściwe podejście i algorytm grupowania dla grupowania geolokalizacyjnego? Używam następującego kodu do grupowania współrzędnych geolokalizacji: import numpy as np import matplotlib.pyplot as plt from scipy.cluster.vq import kmeans2, whiten coordinates= np.array([ [lat, long],...
Pracuję nad projektem nauki danych za pomocą Pythona. Projekt składa się z kilku etapów. Każdy etap obejmuje pobranie zestawu danych, użycie skryptów Python, danych pomocniczych, konfiguracji i parametrów oraz utworzenie innego zestawu danych. Przechowuję kod w git, więc ta część jest objęta....
Używam TensorFlow do eksperymentów głównie z sieciami neuronowymi. Chociaż przeprowadziłem już dość eksperymentów (problem XOR, MNIST, niektóre rzeczy związane z regresją ...), mam problem z wybraniem „właściwej” funkcji kosztu dla konkretnych problemów, ponieważ ogólnie można mnie uznać za...
Dostałem ValueError podczas przewidywania danych testowych przy użyciu modelu RandomForest. Mój kod: clf = RandomForestClassifier(n_estimators=10, max_depth=6, n_jobs=1, verbose=2) clf.fit(X_fit, y_fit) df_test.fillna(df_test.mean()) X_test = df_test.values y_pred =
Mam ramkę danych pand z kilkoma wpisami i chcę obliczyć korelację między dochodami niektórych rodzajów sklepów. Istnieje wiele sklepów z danymi o dochodach, klasyfikacją obszaru działalności (teatr, sklepy odzieżowe, żywność ...) i innymi danymi. Próbowałem utworzyć nową ramkę danych i wstawić...
Obecnie próbuję otworzyć plik z pandami i pytonem do celów uczenia maszynowego, idealnie byłoby dla mnie mieć je wszystkie w ramce danych. Teraz plik ma 18 GB, a moja pamięć RAM to 32 GB, ale wciąż pojawiają się błędy pamięci. Czy z twojego doświadczenia jest to możliwe? Jeśli nie, czy znasz...
W jaki sposób można zaprogramować w bibliotece keras (lub tensorflow) szkolenie partycjonowania na wielu GPU? Powiedzmy, że jesteś w instancji Amazon ec2, która ma 8 procesorów graficznych i chciałbyś wykorzystać je wszystkie, aby trenować szybciej, ale twój kod dotyczy tylko jednego procesora lub...
Pracuję na badania, gdzie potrzeba klasyfikowania jednego zwycięzcy trzech zdarzeń = ( win, draw, lose) WINNER LEAGUE HOME AWAY MATCH_HOME MATCH_DRAW MATCH_AWAY MATCH_U2_50 MATCH_O2_50 3 13 550 571 1.86 3.34 4.23 1.66 2.11 3 7 322 334 7.55 4.1 1.4 2.17 1.61 Mój obecny model to: def...
Próbuję wytrenować model zwiększania gradientu na ponad 50 tysiącach przykładów ze 100 funkcjami numerycznymi. XGBClassifierobsługuje 500 drzew w ciągu 43 sekund na mojej maszynie, a GradientBoostingClassifierobsługuje tylko 10 drzew (!) w 1 minutę i 2 sekundy :( Nie zawracałem sobie głowy próbą...
XGBoost wykonało świetną robotę, jeśli chodzi o radzenie sobie zarówno z kategorycznymi, jak i ciągłymi zmiennymi zależnymi. Ale jak wybrać zoptymalizowane parametry dla problemu XGBoost? Oto jak zastosowałem parametry do ostatniego problemu Kaggle: param <- list( objective = "reg:linear",...
Korzystam ze standardowej regresji liniowej za pomocą scikit-learn w python. Chciałbym jednak wymusić, aby wagi były dodatnie dla każdej cechy (nie ujemne), czy jest jakiś sposób, aby to osiągnąć? Szukałem w dokumentacji, ale nie mogłem znaleźć sposobu na osiągnięcie tego. Rozumiem, że nie mogę...
Zarówno PyTorch, jak i Tensorflow Fold są platformami do głębokiego uczenia się, przeznaczonymi do radzenia sobie w sytuacjach, w których dane wejściowe mają niejednorodną długość lub wymiary (to znaczy sytuacje, w których dynamiczne wykresy są przydatne lub potrzebne). Chciałbym wiedzieć, jak się...