Co decyduje o wyborze funkcji (Softmax vs Sigmoid) w klasyfikatorze logistycznym? Załóżmy, że istnieją 4 klasy wyjściowe. Każda z powyższych funkcji podaje prawdopodobieństwo, że każda klasa będzie poprawnym wyjściem. Który wziąć do
Normalizująca funkcja wykładnicza, która przekształca wektor numeryczny w taki sposób, że wszystkie jego wpisy stają się od 0 do 1 i razem sumują się do 1. Jest często używana jako ostatnia warstwa sieci neuronowej wykonującej zadanie klasyfikacyjne.
Co decyduje o wyborze funkcji (Softmax vs Sigmoid) w klasyfikatorze logistycznym? Załóżmy, że istnieją 4 klasy wyjściowe. Każda z powyższych funkcji podaje prawdopodobieństwo, że każda klasa będzie poprawnym wyjściem. Który wziąć do
Przeczytałem tę stronę: http://neuralnetworksanddeeplearning.com/chap3.html i powiedział, że sigmoidalna warstwa wyjściowa z entropią krzyżową jest dość podobna do warstwy wyjściowej softmax z prawdopodobieństwem logarytmicznym. co się stanie, jeśli użyję sigmoid z logarytmem prawdopodobieństwa...
Od jakiegoś czasu pracuję z Convolutional Neural Networks (CNN), głównie nad danymi obrazu do segmentacji semantycznej / segmentacji instancji. Często wizualizowałem softmax wyjścia sieciowego jako „mapę cieplną”, aby zobaczyć, jak wysokie są aktywacje na piksel dla określonej klasy....
Mam sieć neuronową skonfigurowaną do przewidywania czegoś, gdzie zmienna wyjściowa jest porządkowa. Opiszę poniżej, używając trzech możliwych wyjść A <B <C. Jest całkiem oczywiste, jak używać sieci neuronowej do generowania danych kategorycznych: dane wyjściowe to tylko softmax ostatniej...
Zastosowanie funkcji softmax na wektorze spowoduje „prawdopodobieństwa” i wartości od do . 000111 Ale możemy również podzielić każdą wartość przez sumę wektora, co da prawdopodobieństwa i wartości od do .000111 Przeczytałem tutaj odpowiedź , ale mówi ona, że powodem jest to, że jest...
Wydaje się, że istnieje wiele zamieszania w porównaniu używania glmnetwewnątrz w caretcelu znalezienia optymalnej lambdy i korzystania cv.glmnetz tego samego zadania. Zadano wiele pytań, np .: Model klasyfikacji train.glmnet vs. cv.glmnet? Jaki jest właściwy sposób używania glmnet z...
Studiuję i próbuję wdrożyć splotowe sieci neuronowe, ale przypuszczam, że to pytanie dotyczy ogólnie wielowarstwowych perceptronów. Neurony wyjściowe w mojej sieci reprezentują aktywację każdej klasy: najbardziej aktywny neuron odpowiada przewidywanej klasie dla danego wejścia. Aby rozważyć koszt...
Zastanawiam się, dlaczego hierarchiczny softmax jest lepszy dla rzadkich słów, podczas gdy negatywne próbkowanie jest lepsze dla częstych słów, w modelach CBOW i skip-gram w word2vec. Przeczytałem roszczenie na https://code.google.com/p/word2vec/
Zacząłem uczyć się o sieciach neuronowych w samouczku dotyczącym sieci neuronowych i programowania. W szczególności w trzecim rozdziale znajduje się sekcja o funkcji entropii krzyżowej i definiuje utratę entropii krzyżowej
Funkcja softmax, powszechnie stosowana w sieciach neuronowych do przekształcania liczb rzeczywistych na prawdopodobieństwa, jest taką samą funkcją jak rozkład Boltzmanna, rozkład prawdopodobieństwa nad energiami dla zespołu cząstek w równowadze termicznej w danej temperaturze T w...
W literaturze dotyczącej uczenia maszynowego, aby przedstawić rozkład prawdopodobieństwa, często używana jest funkcja softmax. Czy jest tego powód? Dlaczego nie jest używana inna
Zauważyłem, że Caffe (platforma do głębokiego uczenia się) używała Softmax Loss Layer SoftmaxWithLoss jako warstwy wyjściowej dla większości próbek modelu . O ile mi wiadomo, warstwa Softmax Loss jest połączeniem warstwy wielomianowej straty logistycznej i warstwy Softmax . Powiedzieli to od...
Zamknięte. To pytanie jest nie na temat . Obecnie nie przyjmuje odpowiedzi. Chcesz poprawić to pytanie? Zaktualizuj pytanie, aby było tematem dotyczącym weryfikacji krzyżowej. Zamknięte 11 miesięcy temu . Muszę zastosować funkcję aktywacji Softmax na...