Pytania oznaczone «aic»

AIC oznacza Akaike Information Criterion, która jest jedną z technik stosowanych do wyboru najlepszego modelu z klasy modeli z wykorzystaniem karanego prawdopodobieństwa. Mniejszy AIC oznacza lepszy model.

32
Wytyczne AIC w wyborze modelu

Zazwyczaj używam BIC, ponieważ rozumiem, że bardziej ceni parsimony niż AIC. Jednak zdecydowałem się teraz zastosować bardziej kompleksowe podejście i chciałbym również użyć AIC. Wiem, że Raftery (1995) przedstawił dobre wytyczne dla różnic BIC: 0-2 jest słaby, 2-4 jest pozytywnym dowodem na lepszy...

29
Jak radzić sobie z hierarchicznymi / zagnieżdżonymi danymi w uczeniu maszynowym

Wyjaśnię mój problem na przykładzie. Załóżmy, że chcesz przewidzieć dochód danej osoby na podstawie niektórych atrybutów: {Wiek, płeć, kraj, region, miasto}. Masz taki zestaw danych szkoleniowych train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4,...

27
Czy AIC może porównywać różne typy modeli?

Używam AIC (Akaike's Information Criterion) do porównywania modeli nieliniowych w R. Czy warto porównywać AIC różnych typów modeli? Konkretnie porównuję model dopasowany przez glm do modelu z terminem efektu losowego dopasowanego przez glmer (lme4). Jeśli nie, to czy można dokonać takiego...

23
Interpretacja numerów AIC i BIC

Szukam przykładów, jak interpretować szacunki AIC (kryterium informacji Akaike) i BIC (kryterium informacji bayesowskiej). Czy ujemną różnicę między kodami BIC można interpretować jako późniejsze szanse jednego modelu na drugi? Jak mogę to wyrazić słowami? Na przykład BIC = -2 może sugerować, że...