Po wycentrowaniu można przyjąć , że dwa pomiary x i −x są niezależnymi obserwacjami z rozkładu Cauchy'ego z funkcją gęstości prawdopodobieństwa: 1f(x:θ)=f(x:θ)=f(x :\theta) = ,-∞<x<∞1π(1+(x−θ)2)1π(1+(x−θ)2)1\over\pi (1+(x-\theta)^2) ,−∞<x<∞,−∞<x<∞, -∞ < x < ∞ Pokaż, że...