Pytania oznaczone «separation»

Separacja ma miejsce, gdy niektóre klasy wyniku kategorialnego można doskonale rozróżnić za pomocą liniowej kombinacji innych zmiennych.

39
Model regresji logistycznej nie jest zbieżny

Mam dane na temat lotów linii lotniczych (w ramce danych o nazwie flights) i chciałbym sprawdzić, czy czas lotu ma jakikolwiek wpływ na prawdopodobieństwo znacznie opóźnionego przybycia (co oznacza 10 lub więcej minut). Uznałem, że użyję regresji logistycznej, z czasem lotu jako predyktorem i czy...

21
Wybór modelu z regresją logistyczną Firtha

W małym zestawie danych ( ), z którym pracuję, kilka zmiennych daje mi idealne przewidywanie / separację . Dlatego do rozwiązania tego problemu używam regresji logistycznej Firtha .n ∼ 100n∼100n\sim100 Jeżeli wybiorę najlepszy model według AIC lub BIC , czy powinienem uwzględnić prawdopodobieństwo...

20
Czy jest jakieś intuicyjne wyjaśnienie, dlaczego regresja logistyczna nie zadziała w przypadku idealnej separacji? A dlaczego dodanie uregulowania to naprawi?

Prowadzimy wiele dobrych dyskusji na temat idealnej separacji w regresji logistycznej. Takich jak regresja logistyczna w R doprowadziła do idealnej separacji (zjawisko Haucka-Donnera). Co teraz? a model regresji logistycznej nie jest zbieżny . Osobiście nadal uważam, że nie jest intuicyjne,...

13
Pakiet GBM vs. Caret korzystający z GBM

Stroiłem model przy użyciu caret, ale potem ponownie uruchomiłem model przy użyciu gbmpakietu. Rozumiem, że caretpakiet używa gbmi wynik powinien być taki sam. Jednak tylko szybki test przy użyciu data(iris)wykazuje rozbieżność w modelu około 5% przy użyciu RMSE i R ^ 2 jako metryki oceny. Chcę...

11
R / mgcv: Dlaczego produkty tensorowe te () i ti () wytwarzają różne powierzchnie?

mgcvOpakowanie Rposiada dwie funkcje montowania interakcji produktów napinacz: te()i ti(). Rozumiem podstawowy podział pracy między nimi (dopasowanie interakcji nieliniowej vs. rozkładanie tej interakcji na główne efekty i interakcję). To, czego nie rozumiem, to dlaczego te(x1, x2)i ti(x1) + ti(x2)...